Dtsch Med Wochenschr 2012; 137(42): 2171-2178
DOI: 10.1055/s-0032-1327210
Übersicht | Review article
Hämatologie
© Georg Thieme Verlag KG Stuttgart · New York

Neue Therapiestrategien für BCR/ABL-negative myeloproliferative Neoplasien

Novel therapeutic options in the treatment of BCR/ABL-negative myeloproliferative neoplasms
K. Döhner
1   Klinik für Innere Medizin III, Zentrum für Innere Medizin, Universitätsklinikum Ulm
,
F. Stegelmann
1   Klinik für Innere Medizin III, Zentrum für Innere Medizin, Universitätsklinikum Ulm
,
R. F. Schlenk
1   Klinik für Innere Medizin III, Zentrum für Innere Medizin, Universitätsklinikum Ulm
,
M. Griesshammer
2   Hämatologie und Onkologie, Hämostaseologie und Palliativmedizin am Johannes Wesling Klinikum Minden
› Institutsangaben
Weitere Informationen

Publikationsverlauf

17. Juli 2012

06. September 2012

Publikationsdatum:
10. Oktober 2012 (online)

Zusammenfassung

Mit der Identifizierung der JAK2V617F-Mutation bei der essentiellen Thrombozythämie (ET), der Polyzythämia vera (PV) und der Myelofibrose (MF) im Jahr 2005, wurden erstmals neue und wichtige Einblicke in die Pathogenese myeloproliferativer Neoplasien (MPN) gewonnen werden. Basierend auf diesen Erkenntnissen wurden eine Reihe neuer Substanzen entwickelt oder bereits etablierte Substanzen weiter modifiziert, die derzeit in klinischen Studien bei Patienten mit MPN evaluiert werden. Die meisten Daten liegen derzeit zu den JAK-Inhibitoren, sog. „ATP mimetics” zur Therapie der MF vor. Hier wurden aktuell erste, sehr viel versprechende Ergebnisse aus zwei Phase-III-Studien publiziert, die zeigen konnten, dass die Therapie mit dem JAK1 /2-Inhibitor Ruxolitinib zu einer signifikanten Milzgrößenreduktion und einer deutlichen Verbesserung der Lebensqualität von MF-Patienten führt. Neben den JAK-Inhibitoren werden derzeit auch immunmodulatorische Substanzen, die IMiDs, zur Therapie der MPN eingesetzt. Hier hat sich Pomalidomid als sehr aktive Substanz in Phase-II-Studien erwiesen. Darüber hinaus kommen weitere Kinase-Inhibitoren sowie Histon-Deacetylase-(HDAC-) Inhibitoren und Inhibitoren des mTOR-Signalweges im Rahmen klinischer Studien zum Einsatz. Aufgrund ihrer unterschiedlichen, teils synergistischen Wirkmechanismen sind auch erste Kombinationstherapien in Planung, durch die man sich eine weitere Verbesserung des Ansprechens erhofft.

In der Übersichtsarbeit sollen die aktuellen Ergebnisse zum Einsatz dieser Substanzen vorgestellt und diskutiert sowie weitere neue Therapieansätze vorgestellt werden.

Abstract

Since the discovery of the JAK2V617F mutation in essential thrombocythemia (ET), polycythemia vera (PV) and myelofibrosis (MF) in 2005, the field of myeloproliferative neoplasms (MPN) experiences a significant gain of knowledge. Based on the novel insights in the molecular pathomechanisms of MPN many innovative drugs have been developed that are currently under investigation in clinical trials. Most data are available on the JAK inhibitors, the so called “ATP mimetics” for the treatment of MF. Recent data from two large phase-III studies showed that the JAK1 /2 inhibitor Ruxolitinib is very effective in the reduction of spleen size and the improvement of quality of life in MF patients. Beside JAK inhibitors, immunomodulatory drugs (IMiD) are currently under investigation. Here, pomalidomide showed significant activity in several phase-II studies in MF patients. In addition, other kinase inhibitors as well as histone deacetylase (HDAC) inhibitors and inhibitors of the mTOR signalling pathway are currently evaluated in clinical trials. Based on their potential synergistic action combination therapy of these substances represents another option for MPN therapy.

In this review the most recently published studies using innovative treatment strategies in MPN patients are reported, and some future aspects for MPN treatment are adressed.

 
  • Literatur

  • 1 Barosi G, Grossi A, Comotti B et al. Safety and efficacy of thalidomide in patients with myelofibrosis with myeloid metaplasia. Br J Haematol 2001; 114: 78-83
  • 2 Baxter EJ, Scott LM, Campbell PJ et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005; 365 (9464) 1054-61 Erratum in: Lancet 2005; 366:122
  • 3 Begna KH, Mesa RA, Pardanani A et al. A phase-2 trial of low-dose pomalidomide in myelofibrosis. Leukemia 2011; 25: 301-304
  • 4 Canepa L, Ballerini F, Varaldo R et al. Thalidomide in agnogenic and secondary myelofibrosis. Br J Haematol 2001; 115: 313-315
  • 5 DeAngelo DJ, Tefferi A, Fiskus W et al. A phase II trial of panobinostat, an orally available deacetylase inhibitor (DACi), in patients with primary myelofibrosis (PMF), post essential thrombocythemia (ET), and post polycythemia vera (PV) myelofibrosis. (ASH Annual Meeting Abstracts) 2010 116. 630
  • 6 Elliott MA, Mesa RA, Li CY et al. Thalidomide treatment in myelofibrosis with myeloid metaplasia. Br J Haematol 2002; 117: 288-296
  • 7 Goldman JM. A unifying mutation in chronic myeloproliferative disorders. N Engl J Med 2005; 352: 1744-1746
  • 8 Guglielmelli P, Barosi G, Rambaldi A et al. Safety and efficacy of everolimus, a mTOR inhibitor, as single agent in a phase 1/2 study in patients with myelofibrosis. Blood 2011; 118: 2069-76
  • 9 Harrison C, Kiladjian JJ, Al-Ali HK et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med 2012; 366: 787-798
  • 10 Harrison C, Kiladjan JJ, Passamonti F et al. A Phase 1B, dose-finding study of Ruxolitinib plus Panobinostat in patients with primary myelofibrosis (MF), post–Polycythemia Vera MF (PPV-MF), or post-Essential (PET-MF) Thrombocythemia MF. (EHA Annual Meeting Abstracts) 2012 97. 364
  • 11 Jabbour E, Thomas D, Kantarjian H et al. Comparison of thalidomide and lenalidomide as therapy for myelofibrosis. Blood 2011; 118: 899-902
  • 12 James C, Ugo V, Le Couédic JP et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005; 434: 1144-1148
  • 13 Kralovics R, Passamonti F, Buser AS et al. A gain-offunction mutation of JAK2 in myeloproliferative disorders. N Engl J Med 2005; 352: 1779-1790
  • 14 Levine RL, Wadleigh M, Cools J et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 2005; 4: 387-397
  • 15 Mascarenhas J, Mercado A, Rodriguez A et al. Prolonged low dose therapy with a pan-deacetylase inhibtor, panobinostat (LBH589), in patients with myelofibrosis. (ASH Annual Meeting Abstracts) 2011 118. 794
  • 16 Mesa RA, Hanson CA, Rajkumar SV et al. Evaluation and clinical correlations of bone marrow angiogenesis in myelofibrosis with myeloid metaplasia. Blood 2000; 96: 3374-3380
  • 17 Mesa RA, Yao X, Cripe LD et al. Lenalidomide and prednisone for myelofibrosis: Eastern Cooperative Oncology Group (ECOG) phase 2 trial E4903. Blood 2010; 116: 4436-4438
  • 18 Mesa RA, Pardanani AD, Hussein K et al. Phase1/-2 study of pomalidomide in myelofibrosis. AmJ Hematol 2010; 85: 129-130
  • 19 Pardanani A, George G, Lasho T et al. A phase I/II study of CYT387, an oral JAK-1/2 inhibitor, in myelofibrosis: significant response rates in anemia, splenomegaly, and constitutional symptoms. Blood (ASH Annual Meeting Abstracts) 2010; 116: 460
  • 20 Pardanani A, Gotlib JR, Jamieson C et al. Safety and efficacy of TG101348, a selective JAK2 inhibitor, in myelofibrosis. J Clin Oncol 2011; 29: 789-796
  • 21 Quintás-Cardama A, Kantarjian HM, Manshouri T et al. Lenalidomide plus prednisone results in durable clinical, histopathologic, and molecular responses in patients with myelofibrosis. J Clin Oncol 2009; 27: 4760-4766
  • 22 Rambaldi A, Dellacasa CM, Finazzi G et al. A pilot study of the histone-deacetylase inhibitor givinostat in patients with JAK2V617F positive chronic myeloproliferative neoplasms. Brit J Haematol 2010; 150: 446-455
  • 23 Schlenk RF, Reiter A, Jost E et al. A phase-2 trial of pomalidomide in myelofibrosis. Haematologica (EHA Annual Meeting Abstracts) 2011; 96 s2, abstract 906
  • 24 Tefferi A, Cortes J, Verstovsek S et al. Lenalidomide therapy in myelofibrosis with myeloid metaplasia. Blood 2006; 108: 1158-1164
  • 25 Tefferi A, Barosi G, Mesa RA et al. International Working Group (IWG) consensus criteria for treatment response in myelofibrosis with myeloid metaplasia, for the IWG for Myelofibrosis Research and Treatment (IWG-MRT). Blood 2006; 108: 1497-1503
  • 26 Tefferi A, Verstovsek S, Barosi G et al. Pomalidomide therapy in anemic patients with myelofibrosis: results from a phase-2 randomized multicenter study. J Clin Oncol 2009; 27: 4563-4569
  • 27 Thomas DA, Aguayo A, Giles FJ et al. Thalidomide anti-angiogenesis therapy (Rx) in Philadelphia (Ph)-negative myeloproliferative disorders (MPD) and myelofibrosis (MF). Blood 1999; 94: 507 (Abstract)
  • 28 Verstovsek S. Therapeutic potential of JAK2 inhibitors. Hematology Am Soc Hematol Educ Program 2009; 636-642
  • 29 Verstovsek S, Kantarjian H, Mesa RA et al. Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis. N Engl J Med 2010; 363: 1117-1127
  • 30 Verstovsek S, Passamonti F, Rambaldi A et al. Durable responses with the JAK1/ JAK2 Inhibitor, INCB018424, in patients with polycythemia vera (PV) and essential thrombocythemia (ET) refractory or intolerant to hydroxyurea (HU). Blood (ASH Annual Meeting Abstracts) 2010; 116: 313
  • 31 Verstovsek S, Kantarjian H, Estrov Z et al. Comparison of outcomes of advanced myelofibrosis cases treated with ruxolitinib (INCB018424) to those of a historical control group: survival advantage of ruxolitinib therapy. Blood (ASH Annual Meeting Abstracts) 2011; 118: 793
  • 32 Verstovsek S, Mesa RA, Gotlib J et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med 2012; 366: 799-807