Transfusionsmedizin 2012; 2(4): 183-187
DOI: 10.1055/s-0032-1324869
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

MicroRNAs in Immunität und Organtransplantation

Immunity in Organ Transplantation – Role of microRNAs
J. M. Lorenzen
1   Institute of Molecular and Translational Therapeutic Strategies [IMTTS], Hannover Medical School, Hannover, Germany
2   Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Germany
3   Integrated Research and Treatment Center Transplantation, Hannover Medical School, Hannover, Germany
,
T. Thum
1   Institute of Molecular and Translational Therapeutic Strategies [IMTTS], Hannover Medical School, Hannover, Germany
3   Integrated Research and Treatment Center Transplantation, Hannover Medical School, Hannover, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
21 November 2012 (online)

Zusammenfassung

Die Transplantation von Organen hat in der heutigen Hochleistungsmedizin einen bedeutenden Stellenwert eingenommen. Die Entwicklung hocheffektiver Immunsuppressiva und damit die Verhinderung einer Abstoßung ist die Voraussetzung für das akute und langfristige Transplantatüberleben. Trotz dieser enormen Entwicklung ist die Rate an Organverlusten durch akute und chronische Rejektion immer noch sehr hoch. Verschiedene Biomarker der Transplantatabstoßung konnten bisher identifiziert werden, deren Nutzbarkeit ist jedoch bis heute nur von mäßigem Erfolg. Kürzlich sind kleine regulatorische RNA-Moleküle, sogenannte microRNAs, in den Fokus der Forschung gerückt. MicroRNAs (miRNAs) sind kurze, nicht kodierende RNA-Moleküle, die zur Repression von Zielgenen führen durch einen posttranskriptionellen Abbau von Messenger-RNA (mRNA) und/oder translationaler Inhibition der Proteinexpression. Einige Studien konnten bisher zeigen, dass diese regulatorischen RNA-Moleküle als wichtige Biomarker genutzt werden können. In diesem Übersichtsartikel fassen wir das aktuelle Wissen über die Rolle von microRNAs in der immunologischen Regulation der Transplantathomöostase zusammen. Zudem stellen wir die molekularen Mechanismen und therapeutischen Implikationen sogenannter miRNA-Antagonisten (AntagomiRs) vor, die zu einer zukünftigen potenziellen Verhinderung der Abstoßung und daraus resultierenden Verbesserung des Organüberlebens führen könnten.

Abstract

Due to the development of highly effective immunosuppressive agents over the past 20 years organ transplantation has evolved into a standard therapeutic intervention once organ function terminally declines. Even though the incidence of acute and chronic rejection has been successfully reduced, it still poses a serious life-threatening complication. Several different biomarkers of acute and chronic rejection have been investigated thus far. In recent years microRNAs have come into focus as powerful regulators of gene expression. MicroRNAs (miRNAs) are small, non-coding RNAs that lead to the repression of target genes through the post-transcriptional degradation of messenger-RNA (mRNA) and translational inhibition of protein expression. MiRNAs in different species are highly conserved. MiRNAs regulate the expression of a variety of genes including those involved in adaptive immunity. It has been described that approx. 1500 miRNAs regulate about 50% of the human genome. Therefore, miRNAs might also be involved in the altered expression pattern of genes implicated in acute and chronic rejection. Several studies have elucidated the potential of microRNAs as biomarkers of diseases. We here outline the role of microRNA in transplant homeostasis and organ rejection. In addition, we introduce microRNA antagonists (AntagomiRs) as potential therapeutic agents in the prevention of organ rejection.

 
  • Literatur

  • 1 Meier-Kriesche HU, Schold JD, Kaplan B. Long-term renal allograft survival: have we made significant progress or is it time to rethink our analytic and therapeutic strategies?. Am J Transplant 2004; 4: 1289-1295
  • 2 Nankivell BJ et al. The natural history of chronic allograft nephropathy. N Engl J Med 2004; 349: 2326-2333
  • 3 Colvin RB. Antibody-mediated renal allograft rejection: diagnosis and pathogenesis, Journal of the American Society of Nephrology. J Am Soc Nephrol 2007; 18: 1046-1056
  • 4 Lorenzen JM, Thum T. Circulating and urinary microRNAs in kidney disease. Clin J Am Soc Nephrol 2012; 7: 1528-1533
  • 5 Solez K et al. Banff ʼ05 Meeting Report: differential diagnosis of chronic allograft injury and elimination of chronic allograft nephropathy [‘CAN ]. Am J Transplant 2007; 7: 518
  • 6 Monaco AP et al. Current thinking on chronic renal allograft rejection: issues, concerns, and recommendations from a 1997 roundtable discussion. Am J Kidney Dis 1999; 33: 150
  • 7 Yakupoglu U et al. Post-transplant nephrotic syndrome: A comprehensive clinicopathologic study. Kidney Int 2004; 65: 2360
  • 8 Chapman JR, OʼConnell PJ, Nankivell BJ. Chronic renal allograft dysfunction. J Am Soc Nephrol 2005; 16: 3015
  • 9 Muthukumar T et al. Serine proteinase inhibitor-9, an endogenous blocker of granzyme B/perforin lytic pathway, is hyperexpressed during acute rejection of renal allografts. Transplantation 2003; 75: 1565-1570
  • 10 Vasconcellos LM et al. Cytotoxic lymphocyte gene expression in peripheral blood leukocytes correlates with rejecting renal allografts. Transplantation 1998; 66: 562-566
  • 11 Crispim JC et al. Interleukin-17 and kidney allograft outcome. Transplant Proc 2009; 41: 1562-1564
  • 12 Suarez-Alvarez B et al. The predictive value of soluble major histocompatibility complex class I chain-related molecule A [MICA] levels on heart allograft rejection. Transplantation 2006; 82: 354-361
  • 13 Ramesh G, Kwon O, Ahn K. Netrin-1: a novel universal biomarker of human kidney injury. Transplant Proc 2010; 42: 1519-1522
  • 14 Hancock WW et al. Requirement of the chemokine receptor CXCR3 for acute allograft rejection. J Ex Med 2000; 192: 1515-1520
  • 15 Carthew RW, Sontheimer EJ. Origins and Mechanisms of miRNAs and siRNAs. Cell 2009; 136: 642-655
  • 16 Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cel Biol 2009; 10: 126-139
  • 17 Lorenzen JM et al. Circulating miR-210 predicts survival in critically ill patients with acute kidney injury. Clin J Am Soc Nephrol 2011; 6: 1540-1546
  • 18 Lorenzen JM, Haller H, Thum T. MicroRNAs as mediators and therapeutic targets in chronic kidney disease. Nat Rev Nephrol 2011; 7: 286-294
  • 19 Anglicheau D, Suthanthiran M. Noninvasive prediction of organ graft rejection and outcome using gene expression patterns. Transplantation 2008; 86: 192-199
  • 20 Anglicheau D et al. MicroRNA expression profiles predictive of human renal allograft status. Proc Natl Acad Sci U S A 2009; 106: 5330-5335
  • 21 Chen CZ et al. MicroRNAs modulate hematopoietic lineage differentiation. Science 2004; 303: 83-86
  • 22 Johnnidis JB et al. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 2008; 451: 1125-1129
  • 23 Tam W, Ben-Yehuda D, Hayward WS. bic, a novel gene activated by proviral insertions in avian leukosis virus-induced lymphomas, is likely to function through its noncoding RNA. Mol Cell Biol 1997; 17: 1490-1502
  • 24 OʼConnell RM et al. MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci U S A 2007; 104: 1604-1609
  • 25 OʼConnell RM et al. MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity 2010; 33: 607-619
  • 26 Thai TH et al. Regulation of the germinal center response by microRNA-155. Science 2007; 316: 604-608
  • 27 Harris A, Krams SM, Martinez OM. MicroRNAs as immune regulators: implications for transplantation. Am J Transplant 2010; 10: 713-719
  • 28 Rodriguez A et al. Requirement of bic/microRNA-155 for normal immune function. Science 2007; 316: 608-611
  • 29 Sui W et al. Microarray analysis of MicroRNA expression in acute rejection after renal transplantation. Transplant Immunology 2008; 19: 81-85
  • 30 Monticelli S et al. MicroRNA profiling of the murine hematopoietic system. Genome biology 2005; 6: R71
  • 31 Lorenzen JM et al. Urinary miR-210 as a mediator of acute T-cell mediated rejection in renal allograft recipients. Am J Transplant 2011; 11: 2221-2227
  • 32 Thum T et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signaling in fibroblasts. Nature 2008; 456: 980-984
  • 33 Thum T et al. Comparison of different miR-21 inhibitor chemistries in a cardiac disease model. J Clin Invest 2011; 121: 461-462 author reply 462–463
  • 34 van Rooij E et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci U S A 2008; 105: 13027-13032
  • 35 van Rooij E et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci U S A 2006; 103: 18255-18260
  • 36 Chau BN et al. MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci Transl Med 2012; 4: 121ra18
  • 37 Zhang Z et al. MicroRNA-21 protects from mesangial cell proliferation induced by diabetic nephropathy in db/db mice. FEBS Letters 2009; 583: 2009-2014
  • 38 Godwin JG et al. Identification of a microRNA signature of renal ischemia reperfusion injury. Proc Natl Acad Sci U S A 2010; 107: 14339-14344
  • 39 Scian MJ et al. MicroRNA profiles in allograft tissues and paired urines associate with chronic allograft dysfunction with IF/TA. Am J Transplant 2011; 11: 2110-2122
  • 40 Zhou B et al. miR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely. Proc Natl Acad Sci U S A 2007; 104: 7080-7085
  • 41 Neilson JR et al. Dynamic regulation of miRNA expression in ordered stages of cellular development. Genes Dev 2007; 21: 578-589
  • 42 Li QJ et al. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 2007; 129: 147-161
  • 43 Chen CZ et al. MicroRNAs modulate hemapoetic lineage differetation. Science 2004; 303: 83-86
  • 44 Krutzfeldt J et al. Silencing of microRNAs in vivo with ʼantagomirsʼ. Nature 2005; 438: 685-689
  • 45 Lanford RE et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 2010; 327: 198-201
  • 46 Bonauer A et al. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 2009; 324: 1710-1713
  • 47 Liu G et al. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Ex Med 2010; 207: 1589-1597
  • 48 Spiegel JC et al. Role of microRNAs in immunity and organ transplantation. Expert Rev Mol Med 2011; 13: e37