Synlett 2013; 24(7): 839-842
DOI: 10.1055/s-0032-1318491
letter
© Georg Thieme Verlag Stuttgart · New York

Highly Enantioselective Organocatalytic Michael Addition of Ketones to Nitroolefins in the Presence of Water

Qiankun Chen
Department of Chemistry, Texas A&M University-Commerce, Commerce, TX 75429-3011, USA   Fax: +1(903)4686020   Email: bukuo.ni@tamuc.edu
,
Yupu Qiao
Department of Chemistry, Texas A&M University-Commerce, Commerce, TX 75429-3011, USA   Fax: +1(903)4686020   Email: bukuo.ni@tamuc.edu
,
Bukuo Ni*
Department of Chemistry, Texas A&M University-Commerce, Commerce, TX 75429-3011, USA   Fax: +1(903)4686020   Email: bukuo.ni@tamuc.edu
› Author Affiliations
Further Information

Publication History

Received: 04 February 2013

Accepted after revision: 01 March 2013

Publication Date:
11 March 2013 (online)


Abstract

Chiral pyrrolidine-based organocatalysts, in combination with ionic-liquid-supported Brønsted acids, catalyze the enantioselective Michael addition of ketones and aldehyde to nitroolefins in high yields with high enantioselectivities (ee ≤ 96%) and diastereoselectivities (syn/anti ratio ≤ 98:2). This novel process provides synthetically useful γ-nitrocarbonyl compounds, which can be easily transformed into other invaluable precursors of biologically active compounds. In addition, the synthetic procedure presented is simple and practical.

Supporting Information

 
  • References and Notes


    • For recent reviews, see:
    • 1a Enders D, Grondal C, Hüttl MR. M. Angew. Chem. Int. Ed. 2007; 46: 1570

    • For special issues on organocatalysis, see:
    • 1b Chem. Rev. 2007; 107: 5413-5883
    • 1c Synthesis 2011; 1815-2009
    • 2a Bowery NG. Trends Pharm. Sci. 1982; 31: 401
    • 2b Ono N. The Nitro Group in Organic Synthesis . Wiley-VCH; Weinheim: 2001

      For selected recent reviews, see:
    • 3a Melchiorre P, Marigo M, Carlone A, Bartoli G. Angew. Chem. Int. Ed. 2008; 47: 6138
    • 3b Bertelsen S, Jørgensen KA. Chem. Soc. Rev. 2009; 38: 2178

      For some selected examples, see:
    • 4a Sakthivel K, Notz W, Bui T, Barbas CF. III. J. Am. Chem. Soc. 2001; 123: 5260
    • 4b Betancort JM, Sakthivel K, Thayumanavan R, Barbas CF. III. Tetrahedron Lett. 2001; 42: 4441
    • 4c List B, Pojarliev P, Martin HJ. Org. Lett. 2001; 3: 2423
    • 4d Betancort JM, Barbas CF. III. Org. Lett. 2001; 3: 3737
    • 4e Wang W, Wang J, Li H. Angew. Chem. Int. Ed. 2005; 44: 1369
    • 4f Hayashi Y, Gotoh H, Hayashi T, Shoji M. Angew. Chem. Int. Ed. 2005; 44: 4212
    • 4g Palomo C, Vera S, Mielgo A, Gomez-Bengoa E. Angew. Chem. Int. Ed. 2006; 45: 5984
    • 4h Mosse S, Alexakis A. Org. Lett. 2006; 8: 3577
    • 4i Pansare SV, Pandya K. J. Am. Chem. Soc. 2006; 128: 9624
    • 4j Sulzer-Moss S, Alexakis A. Chem. Commun. 2007; 3123
    • 4k Wiesner M, Upert G, Angelici G, Wennemers H. J. Am. Chem. Soc. 2010; 132: 6

      For reviews on organic reactions in aqueous media, see:
    • 5a Li C.-J, Cheng L. Chem. Soc. Rev. 2006; 35: 68
    • 5b Paradowska J, Stodulski M, Mlynarski J. Angew. Chem. Int. Ed. 2009; 48: 4288
    • 6a Mase N, Watanabe K, Yoda H, Takabe K, Tanaka F, Barbas CF. III. J. Am. Chem. Soc. 2006; 128: 4966
    • 6b Zu L, Wang J, Li H, Wang W. Org. Lett. 2006; 8: 3077
    • 6c Palomo C, Landa A, Mielgo A, Oiarbide M, Puente A, Vera S. Angew. Chem. Int. Ed. 2007; 46: 8431
    • 8a Zhu S, Yu S, Ma D. Angew. Chem. Int. Ed. 2008; 47: 545
    • 8b Ma A, Zhu S, Ma D. Tetrahedron Lett. 2008; 49: 3075
    • 8c Maltsev OV, Kucherenko AS, Zlotin SG. Eur. J. Org. Chem. 2009; 5134
    • 8d Mager I, Zeitler K. Org. Lett. 2010; 12: 1480

      For some selected examples of aldol reactions in aqueous media, see:
    • 9a Hayashi Y, Aratake S, Okano T, Takahashi J, Sumiya T, Shoji M. Angew. Chem. Int. Ed. 2006; 45: 5527
    • 9b Font D, Jimeno C, Pericàs MA. Org. Lett. 2006; 8: 4653
    • 9c Wu Y, Zhang Y, Yu M, Zhao G, Wang S. Org. Lett. 2006; 8: 4417
    • 9d Mase N, Nakai Y, Ohara N, Yoda H, Takabe K, Tanaka F, Barbas CF. III. J. Am. Chem. Soc. 2006; 128: 734

      For recent reviews about organocatalysis in aqueous media, see:
    • 10a Brogan AP, Dickerson TJ, Janda KD. Angew. Chem. Int. Ed. 2006; 45: 8100
    • 10b Hayashi Y. Angew. Chem. Int. Ed. 2006; 45: 8103
    • 10c Mase N, Barbas CF. III. Org. Biomol. Chem. 2010; 8: 4043
  • 11 The results from Prof. Barbas’ group indicated that the Aldol reaction could not proceed in water when catalyst did not include hydrophobic group. See ref. 9d.
    • 12a Wu J, Ni B, Headley AD. Org. Lett. 2009; 11: 3354
    • 12b Zheng Z, Perkins BL, Ni B. J. Am. Chem. Soc. 2010; 132: 50
    • 12c Ghosh SK, Zheng Z, Ni B. Adv. Synth. Catal. 2010; 352: 2378
    • 12d Sarkar D, Bhattarai R, Headley AD, Ni B. Synthesis 2011; 1993
  • 13 Akahane Y, Inomata K, Endo Y. Heterocycles 2011; 82: 1727
  • 14 Peschke B, Bak S, Hohlweg R, Pettersson I, Refsgaard HH. F, Viuff D, Rimvall K. Bioorg. Med. Chem. 2004; 12: 2603
  • 15 Gao Q, Liu Y, Lu S.-M, Li J, Li C. Green Chem. 2011; 13: 1983
  • 16 Chiral pyrrolidines 1c and 1d were found to be effective organocatalysts for Michael addition of ketones to nitroolefins with high selectivity in organic solvent DMF. See ref. 4g.
  • 17 Under the same reaction conditions, Prof. Barbas’ group found that Michael addition of cyclohexanone to nitrostyrene catalyzed by diamine A bearing long alkyl chains (Figure 1) with TFA gave 54% yield of product 5a with 89% ee and a syn/anti ratio of 95:5. See ref. 6a.
  • 18 Typical Procedure for the Asymmetric Michael Addition To a solution of the amine catalyst 1e 19 (8.5 mg, 0.04 mmol) and ILS sulfonic acid 3a 20 (16.4 mg, 0.04 mmol) in H2O (0.8 mL) was added ketone (2.0 mmol) at r.t. The reaction mixture was stirred for 20 min, and then nitroolefin (0.4 mmol) was added. The reaction mixture was stirred until complete conversion of the nitroolefin (monitored by TLC) and then extracted with CH2Cl2 (2 × 2 mL). The combined organic phase was concentrated under vacuum to give the crude residue, which was purified by flash column chromatography (silica gel, hexane–EtOAc) to afford the Michael adduct 5. The syn/anti ratio was determined by 1H NMR spectroscopy of the crude mixture and the ee was determined by chiral HPLC. Analytic Data of 5a 1H NMR (400 MHz, CDCl3): δ = 7.36–7.22 (m, 3 H), 7.17 (d, J = 7.2 Hz, 2 H), 4.95 (dd, J = 12.4, 4.4 Hz, 1 H), 4.64 (dd, J = 12.4, 10.0 Hz, 1 H), 3.77 (dt, J = 14.4, 4.8 Hz, 1 H), 2.74–2.64 (m, 1 H), 2.54–2.33 (m, 2 H), 2.14–2.04 (m, 1 H), 1.83–1.50 (m, 4 H), 1.30–1.18 (m, 1 H). 13C NMR (100 MHz, CDCl3): δ = 211.9, 137.7, 128.9, 128.2, 127.8, 78.9, 52.5, 43.9, 42.7, 33.2, 28.5, 25.0. HPLC (Chiralpak AD-H, i-PrOH–hexane = 10:90, flow rate = 0.5 mL/min, λ = 254 nm): t R (minor) = 19.4 min; t R (major) = 24.7 min; ee = 92%.
  • 19 Gao Q, Liu Y, Lu S.-M, Li J, Li C. Green Chem. 2011; 13: 1983
  • 20 Cole AC, Jensen JL, Ntai I, Tran KL. T, Weaver KJ, Forbes DC, Davis JH. Jr. J. Am. Chem. Soc. 2002; 124: 5962