Synlett 2013; 24(7): 804-812
DOI: 10.1055/s-0032-1318483
account
© Georg Thieme Verlag Stuttgart · New York

New Methods in Organic Synthesis Through Copper-Catalyzed Borylation Reactions: Stereoselective Synthesis of 1,4-Diols and Vinylboronates

Ricardo Alfaro
Departamento de Química Orgánica (módulo 01), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain   Fax: +34(91)4973966   Email: mariola.tortosa@uam.es
,
Alejandro Parra
Departamento de Química Orgánica (módulo 01), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain   Fax: +34(91)4973966   Email: mariola.tortosa@uam.es
,
José Alemán
Departamento de Química Orgánica (módulo 01), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain   Fax: +34(91)4973966   Email: mariola.tortosa@uam.es
,
Mariola Tortosa*
Departamento de Química Orgánica (módulo 01), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain   Fax: +34(91)4973966   Email: mariola.tortosa@uam.es
› Author Affiliations
Further Information

Publication History

Received: 22 January 2013

Accepted after revision: 26 February 2013

Publication Date:
15 March 2013 (online)


In memory of Christian G. Claessens

Abstract

Boronic acid derivatives have become important intermediates in organic and medicinal chemistry and, as a result, the ­development of new methods that permit the efficient creation of C–B bonds under mild conditions has become an active field of research in organic synthesis. In the last ten years, copper-catalyzed borylation reactions have emerged as versatile new tools for introducing boron atoms into organic molecules. Here, we describe our recent research in this field. We have developed two copper-­catalyzed borylation reactions. The first involves the SN2′ addition of bis(pinacolato)diboron to allylic epoxides. This reaction permits the stereoselective synthesis of a wide range of compounds containing a 1,4-diol moiety, a fragment that is present in many natural products with important biological activities. The second reaction is a copper-catalyzed formal carboboration process. In this reaction, a C–B and a C–C bond are created in a single catalytic cycle, and the method provides a new tool for the synthesis of tri- and tetrasubstituted vinylboronates.

1 Introduction

2 Stereoselective Synthesis of 1,4-Diols

3 Synthesis of Tri- and Tetrasubstituted Vinylboronates

4 Outlook

 
  • References

  • 1 Boronic Acids: Preparation, Applications in Organic Synthesis and Medicine. Hall D. Wiley-VCH; Weinheim: 2005
  • 2 Yang W, Gao X, Wang B. Med. Res. Rev. 2003; 23: 346
  • 3 Ishiyama T, Miyaura N In Boronic Acids: Preparation, Applications in Organic Synthesis and Medicine. Hall D. Wiley-VCH; Weinheim: 2005: 101
    • 4a Takahashi K, Ishiyama T, Miyaura N. Chem. Lett. 2000; 29: 982
    • 4b Takahashi K, Ishiyama T, Miyaura N. J. Organomet. Chem. 2001; 625: 47
  • 5 Ito H, Yamanaka H, Tateiwa J, Hosomi A. Tetrahedron Lett. 2000; 41: 6821
  • 6 Cid J, Gulyás H, Carbó JJ, Fernández E. Chem. Soc. Rev. 2012; 41: 3558
  • 7 Ito H, Kawakami C, Sawamura M. J. Am. Chem. Soc. 2005; 127: 16034
  • 8 Ito H, Ito S, Sasaki Y, Matsuura K, Sawamura M. J. Am. Chem. Soc. 2007; 129: 14856
  • 9 Mun S, Lee J.-E, Yun J. Org. Lett. 2006; 8: 4887
  • 10 Lee J.-E, Yun J. Angew. Chem. Int. Ed. 2008; 47: 145
  • 11 Laitar DS, Tsui EY, Sadighi JP. J. Am. Chem. Soc. 2006; 128: 11036
  • 12 Beemen MA, An C, Ellman JA. J. Am. Chem. Soc. 2008; 130: 6910
    • 13a Ito H, Okura T, Matsuura K, Sawamura M. Angew. Chem. Int. Ed. 2010; 49: 560
    • 13b Guzman-Martinez A, Hoveyda AH. J. Am. Chem. Soc. 2010; 132: 10634
    • 13c Ito H, Kunii S, Sawamura M. Nat. Chem. 2010; 2: 972
    • 13d Park JK, McQuade DT. Angew. Chem. Int. Ed. 2012; 51: 2717
  • 14 Ito H, Sasaki Y, Sawamura M. J. Am. Chem. Soc. 2008; 130: 15774
    • 15a Yang C-T, Zhang Z-Q, Tajuddin H, Wu C-C, Liang J, Liu J-H, Fu Y, Czyzewska M, Steel PG, Marder TB, Liu L. Angew. Chem. Int. Ed. 2012; 51: 528
    • 15b Ito H, Kubota K. Org. Lett. 2012; 14: 890

      For reviews on asymmetric Cu(I)-catalyzed borylation of conjugated alkenes, see:
    • 16a Schiffner JA, Múther K, Oestreich M. Angew. Chem., Int. Ed. 2010; 49: 1194
    • 16b Mantilli L, Mazet C. ChemCatChem 2010; 2: 501

    • For selected examples, see refs. 9 and 10 and:
    • 16c Yin L, Itano W, Kanai M, Shibasaki M. J. Am. Chem. Soc. 2009; 131: 11664
    • 16d Sim H.-S, Feng X, Yun J. Chem. Eur. J. 2009; 15: 1939
    • 16e Feng X, Yun J. Chem. Eur. J. 2010; 16: 13609
    • 16f O’Brien JM, Lee K.-s, Hoveyda AH. J. Am. Chem. Soc. 2010; 132: 10630
    • 16g Solé C, Whiting A, Gulyás H, Fernández E. Adv. Synth. Catal. 2011; 353: 376
    • 16h Moure AL, Gómez-Arrayás R, Carretero JC. Chem. Commun. (Cambridge) 2011; 47: 6701
    • 17a Lee J.-E, Kwon J, Yun J. Chem. Commun. (Cambridge) 2008; 733
    • 17b Kim HR, Yun J. Chem. Commun. (Cambridge) 2011; 47: 2943
    • 17c Jang H, Zhugralin AR, Lee Y, Hoveyda AM. J. Am. Chem. Soc. 2011; 133: 7859
    • 17d Sasaki Y, Horita Y, Zhong C, Sawamura M, Ito H. Angew. Chem. Int. Ed. 2011; 50: 2778
    • 17e Yoshida H, Kawashima S, Takemoto Y, Okada K, Ohshita J, Takaki K. Angew. Chem. Int. Ed. 2012; 51: 235
    • 17f Moure AL, Gómez Arrayás R, Cárdenas DJ, Alonso I, Carretero JC. J. Am. Chem. Soc. 2012; 134: 7219
    • 18a Zhao HT, Lin Z, Marder TB. J. Am. Chem. Soc. 2006; 128: 15637
    • 18b Dang L, Zhao H, Lin Z, Marder TB. Organometallics 2007; 26: 2824
    • 18c Zhao HT, Dang L, Marder TB, Lin Z. J. Am. Chem. Soc. 2008; 130: 5586
  • 19 Tortosa M. Angew. Chem. Int. Ed. 2011; 50: 3950
  • 20 Alfaro R, Parra A, Alemán J, García Ruano JL, Tortosa M. J. Am. Chem. Soc. 2012; 134: 15165

    • For selected examples of symmetrical 1,4-diols, see:
    • 21a Bäckvall JE, Byström SE, Nordberg RE. J. Org. Chem. 1984; 49: 4619
    • 21b Burk MJ, Feaster JE, Harlow RL. Tetrahedron: Asymmetry 1991; 2: 569
    • 21c Vettel S, Knochel P. Tetrahedron Lett. 1994; 35: 5849
    • 21d Quallich GJ, Keavey KN, Woodall TM. Tetrahedron Lett. 1995; 36: 4729
    • 21e Kuwano R, Sawamura M, Shirai J, Takahashi M, Ito Y. Tetrahedron Lett. 1995; 36: 5239
    • 21f Ariza X, Bach J, Berenguer R, Farràs J, Fontes M, Garcia J, López M, Ortiz J. J. Org. Chem. 2004; 69: 5307
    • 21g Hodgson DM, Bray CD, Kindon ND. Org. Lett. 2005; 7: 2305

      For selected examples, see:
    • 22a Tanner D, Somfai P. Tetrahedron 1987; 43: 4395
    • 22b Yu J, Lai J-Y, Ye J, Balu N, Reddy LM, Duan W, Fogel ER, Capdevila JH, Falck JR. Tetrahedron Lett. 2002; 43: 3939

      For selected examples, see:
    • 23a Gurjar MK, Pramanik C, Bhattasali D, Ramana CV, Mohapatra DK. J. Org. Chem. 2007; 72: 6591
    • 23b Motoyoshi H, Ishigami K, Kitahara T. Tetrahedron 2001; 57: 3899
    • 24a Binanzer M, Fang GY, Aggarwal VK. Angew. Chem. Int. Ed. 2010; 49: 4264
    • 24b Roush WR, Grover PT. Tetrahedron 1992; 48: 1981
  • 25 Amador M, Ariza X, Garcia J, Ortiz J. Tetrahedron Lett. 2002; 43: 2691
  • 26 Marshall JA. Chem. Rev. 1989; 89: 1503
  • 27 Mlynarski SN, Karns AS, Morken JP. J. Am. Chem. Soc. 2012; 134: 16449
  • 28 Lachance H, Hall DG. Allylboration of Carbonyl Compounds, Org. React. (N. Y.) 2008; 73: 1
  • 29 Stymiest JL, Dutheuil G, Mahmood A, Aggarwal VK. Angew. Chem. Int. Ed. 2007; 46: 7491
  • 30 Negishi E, Wang G, Rao H, Xu Z. J. Org. Chem. 2010; 75: 3151
  • 31 Negishi E, Boardman LD. Tetrahedron Lett. 1982; 23: 3327
  • 32 Ohmura T, Takasaki Y, Furukawa H, Suginome M. Angew. Chem. Int. Ed. 2009; 48: 2372
  • 33 Daini M, Yamamoto A, Suginome M. J. Am. Chem. Soc. 2008; 130: 2918
  • 34 Takemoto Y, Yoshida H, Takaki K. Chem. Eur. J. 2012; 18: 14841
  • 35 Zhang L, Cheng J, Carry B, Hou Z. J. Am. Chem. Soc. 2012; 134: 14314