Synlett 2013; 24(6): 719-722
DOI: 10.1055/s-0032-1318480
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of S-Linked N-Acetylneuraminic Acid Derivatives via Photoinduced Thiol–ene and Thiol–yne Couplings

Magdolna Csávás*
a   Department of Pharmaceutical Chemistry, Medical and Health Science Center, University of Debrecen, PO Box 70, 4010 Debrecen, Hungary   Fax: +36(52)512914   Email: csavas.magdolna@science.unideb.hu   Email: borbas.aniko@pharm.unideb.hu
b   Research Group for Carbohydrates of the Hungarian Academy of Sciences, P.O. Box 94, 4010 Debrecen, Hungary
,
Mihály Herczeg
b   Research Group for Carbohydrates of the Hungarian Academy of Sciences, P.O. Box 94, 4010 Debrecen, Hungary
c   Department of Organic Chemistry, University of Debrecen, PO Box 20, 4010 Debrecen, Hungary
,
Anikó Borbás*
a   Department of Pharmaceutical Chemistry, Medical and Health Science Center, University of Debrecen, PO Box 70, 4010 Debrecen, Hungary   Fax: +36(52)512914   Email: csavas.magdolna@science.unideb.hu   Email: borbas.aniko@pharm.unideb.hu
› Author Affiliations
Further Information

Publication History

Received: 23 January 2013

Accepted after revision: 26 February 2013

Publication Date:
08 March 2013 (online)


Abstract

Thio-linked mono- and bivalent mimetics of α(2→3) and α(2→6)-linked sialosides were prepared by photoinduced hydrothiolation of alkenes and alkynes with the 2-mercapto sialic acid. Thiosialylation of 6-O-allyl- or 3-O-allyl-substituted galactose derivatives has been carried out by the thiol–ene click reaction. Double thiosialylation has also been achieved via thiol–yne chemistry using propargylated galactose derivatives as the alkyne components and the peracetylated 2-mercapto sialic acid as the thiol.

Supporting Information

 
  • References and Notes

    • 1a Simanek EE, McGarvey GJ, Jablonowski JA, Wong C.-H. Chem. Rev. 1998; 98: 833
    • 1b Boons G.-J, Demchenko VA. Chem. Rev. 2000; 100: 4539
    • 1c Bertozzi CR, Kiessling LL. Science 2001; 291: 2357
  • 2 Kiefel MJ, von Itzstein M. Chem. Rev. 2002; 102: 471
    • 3a Suzuki Y, Sato K, Kiso M, Hasegawa A. Glycoconjugate J. 1990; 7: 349
    • 3b Kiefel MJ, Beisner B, Bennett S, Holmes ID, von Itzstein M. J. Med. Chem. 1996; 39: 1314
    • 3c Rich JR, Bundle DR. Org. Lett. 2004; 6: 897
    • 3d Wilson JC, Kiefel MJ, Angus DI, von Itzstein M. Org. Lett. 1999; 1: 443
    • 3e Rich JR, Wakarchuk WW, Bundle DR. Chem. Eur. J. 2006; 12: 845
    • 4a Witczak ZJ, Sun J, Mielguj R. Bioorg. Med. Chem Lett. 1995; 5: 2169
    • 4b Becker B, Thimm J, Thiem J. J. Carbohydr. Chem. 1996; 15: 1179
    • 4c Uhrig ML, Varela O. Aust. J. Chem. 2002; 55: 155
    • 5a Lacombe JM, Rakotomanomana N, Pavia AA. Tetrahedron. Lett. 1988; 29: 4293
    • 5b Fulton DA, Stoddart JF. Org. Lett. 2000; 2: 1113
    • 5c Meng X.-B, Yang L.-D, Li H, Li Q, Cheng T.-M, Cai M.-S, Li Z.-J. Carbohydr. Res. 2002; 337: 977
    • 5d Köhn M, Benito JM, Ortiz Mellet C, Lindhorst TK, García Fernández JM. ChemBioChem 2004; 5: 771
    • 5e Floyd N, Vijayakrishnan B, Koeppe JR, Davis BG. Angew. Chem. Int. Ed. 2009; 48: 7798
    • 5f Fiore M, Marra A, Dondoni A. J. Org. Chem. 2009; 74: 4422
    • 5g Fiore M, Chambery A, Marra A, Dondoni A. Org. Biomol. Chem. 2009; 7: 3910
    • 5h Fiore M, Lo Conte M, Pacifico M, Marra A, Dondoni A. Tetrahedron Lett. 2011; 52: 444
    • 5i Staderini S, Chambery A, Marra A, Dondoni A. Tetrahedron Lett. 2012; 53: 702
    • 5j Lázár L, Csávás M, Herczeg M, Herczegh P, Borbás A. Org. Lett. 2012; 14: 4650
  • 6 Chen G, Kumar J, Gregory A, Stenzel MH. Chem. Commun. 2009; 6291
  • 7 Fairbanks BD, Scott TF, Kloxin CJ, Anseth KS, Bowman CN. Macromolecules 2009; 42: 211
    • 8a Chan JW, Hoyle CE, Lowe AB. J. Am. Chem. Soc. 2009; 131: 5751
    • 8b Hensarling RM, Doghty VA, Chan JW, Patton DL. J. Am. Chem. Soc. 2009; 131: 14673
    • 9a Lo Conte M, Pacifico S, Chambery A, Marra A, Dondoni A. J. Org. Chem. 2010; 75: 6291
    • 9b Semsarilar M, Ladmiral V, Perrier S. Macromolecules 2010; 43: 1438
    • 9c Norberg O, Lee IH, Aastrup T, Yan M, Ramström O. Biosens. Bioelectron. 2012; 34: 51
  • 10 Black WA. P, Colquhoun JA, Dewar ET. Carbohydr. Res. 1967; 5: 362
  • 11 Hasegawa A, Nakamura J, Kiso M. J. Carbohydr. Chem. 1986; 5: 11
  • 12 Hoyle CE, Lee TY, Roper TJ. Polym. Sci., Part A: Polym. Chem. 2004; 42: 5301
  • 13 General Method for the Photoinduced Addition of 2-Mercapto Sialic Acid 1 to Alkenes 2 and 8 and Alkynes 4 and 11 To a solution of the starting alkene or alkyne (1.00 mmol) in dry toluene (5 mL), thiol (2.0–4.0 equiv) and 2,2-dimethoxy-2-phenylacetophenone (DPAP, 2 × 25 mg, 2 × 0.10 mmol) were added. The solution was deoxygenated and irradiated with a UV lamp (λ = 365nm) at r.t. for 2 × 15 min. Then the solution was concentrated, and the residue was purified by column chromatography.
  • 14 NMR Data for Compound 3 1H NMR (500 MHz, CDCl3): δ = 5.52 (d, 1 H, H-1, J 1,2 = 5.0 Hz), 5.34–5.31 (m, 3 H), 5.29 (d, 1 H, J = 10.5 Hz, NH), 4.89–4.83 (m, 1 H, H-4′), 4.59 (dd, 1 H, J 1 = 8.0 Hz, J 2 = 2.5 Hz, H-5′), 4.32–4.29 (m, 2 H), 4.25 (dd, 1 H, J 1 = 8.0 Hz, J 2 = 2.0 Hz), 4.11 (dd, 1 H, J 1 = 12.5 Hz, J 2 = 4.5 Hz), 4.07–4.01 (m, 1 H), 3.95–3.93 (m, 1 H), 3.83–3.80 (m, 1 H), 3.79 (s, 3 H, COOCH3), 3.64–3.48 (m, 3 H), 2.77–2.64 (m, 4 H), 2.15, 2.13, 2.04, 2.03 (4 × s, 12 H, 4 × CH3,Ac), 1.87 (s, 3 H, CH3,NHAc), 1.85–1.77 (m, 2 H), 1.54, 1.44, 1.34, 1.33 (4 × s, 12 H, 4 × CH3) ppm. 13C NMR (125 MHz, CDCl3): δ = 170.9–168.5 (6 × CO), 109.1, 108.4 [2 × (CH3)2C], 96.3 (C-1), 83.2 (C-2′), 74.1, 71.1, 70.6, 69.6, 68.7, 67.3, 66.6 (C-2, C-3, C-4, C-5, C-4′, C-6′, C-7′, C-8′), 69.7, 69.4 (C-6, OCH2) 62.1 (C-9′), 52.9 (OCH3), 49.3 (C-5′), 38.0 (C-3′), 29.4, 25.9 (OCH2CH2CH2S), 26.0, 25.7, 24.9, 24.4, 23.1 (4 × CH3,Ac, CH3,NHAc), 21.1, 20.8, 20.7 (4 × CH3) ppm.
  • 15 Yousuf SK, Taneja SC, Mukherjee D. J. Org. Chem. 2010; 75: 3097
  • 16 NMR Data for Compound 5 1H NMR (500 MHz, CDCl3): δ = 6.43* (d, 0.7 H, J = 15.5 Hz, SCH=CHCH2), 6.41* (d, 0.3 H, J = 8.5 Hz, SCH=CHCH2), 5.93–5.88 (m, 1 H, SCH=CHCH2), 5.59–5.52 (m, 2 H), 5.39–5.31 (m, 3 H), 4.89–4.85 (m, 1 H), 4.60–4.57 (m, 1 H), 4.32–4.24 (m, 3 H), 4.16–4.03 (m, 4 H), 3.96–3.88 (m, 2 H), 3.85–3.78 (m, 4 H), 3.63–3.53 (m, 2 H), 2.76–2.71 (m, 1 H), 2.20–1.87 (m, 15 H), 1.54, 1.53, 1.44, 1.43, 1.34, 1.33, 1.32 (7 × s, 12 H, CH3,ip) ppm. 13C NMR (125 MHz, CDCl3): δ = 170.7, 170.5, 170.2, 169.9, 168.0, 167.9 (CO), 132.3, 128.5, 121.2, 120.3 (SCH=CHCH2), 109.0, 108.4 [(CH3)2 C], 96. 2 (C-1), 84.2, 83.3 (2 × C-2′), 75.0, 74.3, 74.2, 71.0, 70.5, 70.4, 70.2, 69.5, 69.4, 68.9, 68.5, 67.6, 67.3, 67.2, 66.7, 66.6 (skeleton carbons), 71.1, 68.8, 68.5, 67.7, 62.1, 62.0 (C-6, C-9′, CH2), 53.0, 52.9 (2 × COOCH3), 49.0 (2 × C-5′), 37.5, 37.3 (2 × C-3′), 25.9, 25.8, 24.8, 24.3, 22.9, 21.0, 20.6 (CH3,Ac, CH3,NAc, CH3) ppm; *overlapping signals.
  • 17 Dondoni and co-workers also observed the lack of stereoselectivity during photoinduced addition of glucosyl or galactosyl thiols to alkynyl peptides; see ref. 8a.
  • 18 Clausen MH, Madsen R. Carbohydr. Res. 2004; 339: 2159
  • 19 Lipták A, Jodál I, Harangi J, Nánási P. Acta Chim. Hung. 1983; 113: 415
  • 20 Lázár L, Bajza I, Jakab Zs, Lipták A. Synlett 2005; 2242
  • 21 NMR Data for Compound 12 1H NMR (360 MHz, CDCl3): δ = 8.06–7.26 (m, 10 H, arom.), 5.60–5.43 (m, 3 H), 5.30–5.27 (m, 2 H), 5.14–5.12 (m, 1 H), 4.85–4.75 (m, 2 H), 4.57 (d, 1 H, J = 7.9 Hz), 4.50 (t, 1 H, J = 10.0 Hz), 4.45–4.35 (m, 3 H), 4.29–4.24 (m, 1 H), 4.15–3.87 (m, 8 H), 3.80–3.49 (m, 16 H), 2.60–2.54 (m, 2 H), 2.14–1.25 (m, 23 H) ppm. 13C NMR (90 MHz, CDCl3): δ = 170.9, 170.6, 170.1, 170.0 (6 C, CO), 133.5-126.4 (10 C, arom), 102.3, (2 C, Cac), 101.1 (C-1), 83.3 (C-2′), 78.5, 73.9, 73.2, 69.6, 68.3, 67.1, 66.7, 66.4 (8 C, skeleton carbons), 70.5, 69.3, 69.1, 68.0, 66.8 (5 C, 4 × CH2, C-6), 63.0 (C-9′), 52.8 (C-5′), 35.1, 32.7, 29.3, 29.2, 29.1, 25.8, 25.7, 25.5, 23.8, 23.7 (10 C, CH2), 23.1 (CH3,NHAc), 21.2, 20.8 (4 C, CH3,Ac) ppm.
  • 22 Giguère D, Patnam R, Bellefleur M.-A, St-Pierre C, Sato S, Roy R. Chem. Commun. 2006; 2379
  • 23 NMR Data for Compound 15 1H NMR (500 MHz, CDCl3): δ = 6.46 (d, 0.17 H, J = 9.5 Hz, SCH=CHCH2), 6.35 (d, 0.83 H, J = 15.5 Hz, SCH=CHCH2), 5.72–5.69 (m, 1 H, SCH=CHCH2), 5.48–5.31 (m, 3 H), 5.04–5.01 (m, 1 H), 4.90–4.85 (m, 2 H), 4.51–4.49 (m, 2 H), 4.40–4.17 (m, 3 H), 4.15–4.05 (m, 3 H), 4.01–3.75 (m, 10 H), 3.60–3.42 (m, 3 H), 2.75–2.72 (m, 2 H), 2.22–1.84 (m, 24 H), 1.59–1.28 (m, 14 H) ppm. 13C NMR (125 MHz, CDCl3): δ = 170.7, 170.5, 170.4, 170.3, 170.2, 170.1, 170.0, 169.8, 169.4, 169.3, 168.1, 167.7 (CO), 130.5, 128.4, 122.2, 121.9 (CH), 102.3 (Cac), 101.2 (C-1), 77.2, 77.0, 76.7, 76.6, 76.1, 74.9, 74.4, 74.1, 70.7, 70.4, 69.8, 69.2, 68.8, 68.0, 67.3, 67.0, 66.7, 66.5, 65.9 (skeleton carbons), 69.5, 69.4, 67.5 (CH2), 62.2, 62.1, 61.9 (C-6), 53.0 (OCH3), 49.2, 49.0 (C-5), 37.5, 37.3, 35.1, 29.3, 29.1, 25.74 (CH2), 25.6, 23.7, 23.0, 21.1, 21.0, 20.9, 20.7, 20.6 (CH3) ppm