Synlett 2013; 24(6): 709-712
DOI: 10.1055/s-0032-1318433
letter
© Georg Thieme Verlag Stuttgart · New York

Controlled-Length Efficient Synthesis of Heterobifunctionalized Oligo Ethylene Glycols

Cristiano Zona
Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy   Fax: +39 0264483565   Email: barbara.laferla@unimib.it
,
Giuseppe D’Orazio
Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy   Fax: +39 0264483565   Email: barbara.laferla@unimib.it
,
Barbara La Ferla*
Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy   Fax: +39 0264483565   Email: barbara.laferla@unimib.it
› Author Affiliations
Further Information

Publication History

Received: 23 January 2013

Accepted after revision: 19 February 2013

Publication Date:
04 March 2013 (online)


Abstract

A set of heterobifunctional oligo ethylene glycols have been synthesized in a straightforward and stepwise manner starting from inexpensive, commercially available, tetraethylene glycol. Introduction of terminal allyl moieties followed by reductive ozonolysis allowed controlled elongation. Mono-allyl derivatives were used for the elongation with a functionalized moiety and for successive introduction of different functional groups on the chain terminal.

Supporting Information

 
  • References and Notes

  • 1 Harris JM In Poly(ethylene glycol) Chemistry: Biotechnical and Biomedical Applications. Harris JM. Plenum Press; New York: 1992
  • 2 Powell GM In Polyethylene glycol. Handbook of Water Soluble Gums and Resins. Davison RL. McGraw-Hill; New York: 1980: 18-21
  • 3 Dreborg S, Akerblom EB. Crit. Rev. Ther. Drug Carrier Syst. 1990; 6: 315
  • 4 Yamaoka T, Tabata Y, Ikada Y. J. Pharm. Sci. 1994; 83: 601
  • 5 Zalipsky S. Adv. Drug Delivery Rev. 1995; 16: 157
  • 6 Zalipsky S. Bioconjugate Chem. 1995; 6: 150
  • 7 Luxon BA, Grace M, Brassard D, Broders R. Clin. Ther. 2002; 24: 1363
  • 8 Roberts MJ, Bently MD, Harris JM. Adv. Drug Delivery Rev. 2002; 54: 459
  • 9 Bruckdorfer T. Eur. Biopharm. Rev. 2008; 96
  • 10 Mourtas S, Canovi M, Zona C, Aurilia D, Niarakis A, La Ferla B, Salmona M, Nicotra F, Gobbi M, Antimisiaris GS. Biomaterials 2011; 32: 1635
  • 11 Le Droumaguet B, Nicolas J, Brambilla D, Maksimenko A, Salvati E, De Kimpe L, Zona C, Airoldi C, Canovi M, Gobbi M, Noiray M, La Ferla B, Nicotra F, Scheper W, Flores O, Masserini M, Andrieux K, Couvreur P. ACS Nano 2012; 6: 5866
  • 12 Hildebrand HF, Blanchemain N, Mayer G, Chai F, Lefebvre M, Boschin F. Surf. Coat. Technol. 2006; 200: 6318
  • 13 Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM. Chem. Rev. 2005; 105: 1103
  • 14 Mrksich M. Curr. Opin. Colloid Interface Sci. 1997; 2: 83
  • 15 Kingshott P, Griesser HJ. Curr. Opin. Solid State Mater. Sci. 1999; 4: 403
  • 16 Novabiochem supply protected (P = Boc/Fmoc) P-NH-(PEG)n-COOH (n ranging from 2 to 27) and prices from 300 to 1000 USD/g; N-Biotinyl-NH(PEG)11-COOH (quantity and price on request); NanoCs present a considerable catalogue of mono- and di-funcionalized PEGs, but the products are not monodispersed. Same consideration for SigmaAldrich.
  • 17 Zalipsky S. Bioconjugate Chem. 1995; 6: 150
  • 18 Bertozzi CR, Bednarski MD. J. Org. Chem. 1991; 56: 4326
  • 19 Cook RM, Adams JH, Hudson D. Tetrahedron Lett. 1994; 35: 6777
  • 20 Schwabacher AW, Lane JW, Schiesher MW, Leigh KM, Johnson CW. J. Org. Chem. 1998; 63: 1727
  • 21 Hervè G, Hahn DU, Hervè AC, Goodworth KJ, Hill AM, Hailes HC. Org. Biomol. Chem. 2003; 1: 427
  • 22 Kohler N, Fryxell GE, Zhang M. J. Am. Chem. Soc. 2004; 126: 7206
  • 23 Pilkington-Miska MA, Sarkar S, Writer MJ, Barker SE, Shamlou PA, Hart SL, Hailes HC, Tabor AB. Eur. J. Org. Chem. 2008; 2900
  • 24 Svedhem S, Hollander CÅ, Shi J, Konradsson P, Liedberg B, Svensson S. J. Org. Chem. 2001; 66: 4494
  • 25 Loiseau F, Hii KK, Hill AM. J. Org. Chem. 2004; 69: 639
  • 26 Ehteshami GR, Sharma SD, Porath J, Guzman RZ. React. Funct. Polym. 1997; 35: 135
  • 27 Voelcker NH, Klee D, Hanna M, Hoecker H, Bou JJ, de Ilarduya AM, Munoz-Guerra S. Macromol. Chem. Phys. 1999; 200: 1363
  • 28 Drioli S, Benedetti F, Bonora GM. React. Funct. Polym. 2001; 48: 119
  • 29 La Ferla B, Zona C, Nicotra F. Synlett 2009; 2325
  • 30 Burkett BA, Chan TH. Synlett 2004; 1007
  • 31 Doyle MP, Hu W. J. Org. Chem. 2000; 65: 8839
  • 32 Tahtaoui C, Parrot I, Klotz P, Guillier F, Galzi J.-L, Hibert M, Ilien B. J. Med. Chem. 2004; 47: 4300
  • 33 Buskas T, Söderberg E, Konradsso P, Fraser-Reid B. J. Org. Chem. 2000; 65: 958
  • 34 Kolb HC, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2001; 40: 2004
  • 35 Monoallylation of EG; Typical Procedure: To a solution of EG 1 (1 equiv) in anhydrous DMF (0.5 M) was slowly added NaH (60% w/w in mineral oil, 2 equiv) and the mixture was reacted for 20 min. Allyl bromide (1.4 equiv) was added dropwise to the solution, which was stirred at r.t. overnight. The reaction mixture was then filtered to remove the precipitate and the solvent was removed under vacuum to afford the crude product, which was further purified by flash chromatography (petroleum ether–EtOAc, 8:2→1:9, with 2% MeOH as additive) to afford the desired product monoallyl 3 (51%). 1H NMR (400 MHz, CDCl3): δ = 2.82 (s, 1 H, OH), 3.51–3.66 (m, 16 H), 3.94 (d, J = 5.7 Hz, 2 H, CH2CH=CH2), 5.13–5.26 (m, 2 H, CH2CH=CH2), 5.87–5.99 (m, 1 H, CH2CH=CH2).
  • 36 Conversion of the Allyl Unit into a Terminal Ethylene Glycol Unit; Typical Procedure: O3 gas was bubbled, at –78 °C, into a 0.03 M solution of 8 (1 equiv) in CH2Cl2. The solution was stirred at r.t. until the disappearance of starting material was observed, then Ar gas was bubbled through the mixture. After 15 min, NaBH4 (2 equiv) was added to the resulting solution, which was allowed to react at r.t. until the disappearance of ozonide intermediates was observed. After the addition of acetone to quench unreacted NaBH4, the solvent was removed in vacuum and the crude product was purified by flash chromatography (CH2Cl2–EtOH, 9.5:0.5) to afford 13 (81%). 1H NMR (400 MHz, CDCl3): δ = 3.70–3.65 (m, 2 H, HOCH2CH2O), 3.65–3.58 (m, 26 H, OCH2CH2O and HOCH2CH2O), 3.56 (t, J = 5.0 Hz, 2 H, OCH2CH2N3), 3.34 (t, J = 5.0 Hz, 2 H, OCH2CH2N3).