Synlett 2012; 23(19): 2858-2864
DOI: 10.1055/s-0032-1317488
letter
© Georg Thieme Verlag Stuttgart · New York

A Convenient Method of Facilitating Aryl–Aryl Bond-Formation Reactions in the Synthesis of Biquinoline- and Quinoline-Bearing Chromene Derivatives

Mathan Sankaran
a   School of Chemical Sciences, Bharathiar University, Coimbatore 641046, India   Fax: +91(422)2459845   Email: psmohan59@gmail.com
,
Kumarasamy Chandraprakash
a   School of Chemical Sciences, Bharathiar University, Coimbatore 641046, India   Fax: +91(422)2459845   Email: psmohan59@gmail.com
,
Chokkalingam Uvarani
a   School of Chemical Sciences, Bharathiar University, Coimbatore 641046, India   Fax: +91(422)2459845   Email: psmohan59@gmail.com
,
Kailasam Natesan Vennila
b   Centre for Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, India
,
Devadasan Velmurugan
b   Centre for Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, India
,
Palathurai Subramaniam Mohan*
a   School of Chemical Sciences, Bharathiar University, Coimbatore 641046, India   Fax: +91(422)2459845   Email: psmohan59@gmail.com
› Author Affiliations
Further Information

Publication History

Received: 25 August 2012

Accepted: 26 September 2012

Publication Date:
07 November 2012 (online)


Abstract

A method to derive functionalized biquinoline- and quinoline-bearing chromene bicyclic systems through aryl–aryl bond formation in a one-pot synthesis is described. The X-ray structure analysis provides insight into the mode of orientation of the molecules and opens the way to the synthesis of various hybrid molecules by making use of suitable substituents at R1, R2, and R3.

Supporting Information

 
  • References and Notes

  • 2 Depero LE, Curri ML. Curr. Opin. Solid State Mater. Sci. 2004; 8: 103
  • 3 Ruben M, Rojo J, Salguero FJ. R, Uppadine LH, Lehn JM. Angew. Chem. Int. Ed. 2004; 43: 3644
  • 4 Maspoch D, Ruiz-Molinaa D, Veciana J. Chem. Soc. Rev. 2007; 36: 770
  • 5 Yan Y, Huang J. Coord. Chem. Rev. 2010; 254: 1072
  • 6 Batten SR, Robson R. Angew. Chem. Int. Ed. 1998; 37: 1460 ; Angew. Chem. 1998, 110, 1559
  • 8 Lehn JM. Supramolecular Chemistry . Wiley-VCH; Weinheim: 1995
  • 9 MacGillivray LR, Groeneman RH, Atwood JL. J. Am. Chem. Soc. 1998; 120: 2676
  • 10 Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, Couvreur P, Gref R. Nature Materials 2010; 9: 172
  • 11 Batten SR, Robson R. Angew. Chem. Int. Ed. 1998; 37: 1460 ; Angew. Chem. 1998, 110, 1559
  • 13 Hunter CA. Angew. Chem., Int. Ed. Engl. 1995; 34: 1079 ; Angew. Chem. 1995, 107, 1181
  • 14 Brunet P, Simard M, Wuest JD. J. Am. Chem. Soc. 1997; 119: 2737
  • 15 Raynes K, Foley M, Tilley L, Deady LW. Biochem. Pharmacol. 1996; 52: 551
  • 16 Ali BasemF, Al-Souod K, Al-Ja’ar N, Nasser A, Zaghal MH, Judeh Z, Al-Far R, Al-Refai M, Al-Obaidi KH. J. Coord. Chem. 2006; 59: 229
  • 17 Wrasidlo W, Norris SO, Wolfe JF, Katto T, Stille JK. Macromolecules 1976; 9: 512
  • 18 Wrasidlo W, Stille JK. Macromolecules 1976; 9: 505
  • 19 Ichikawa J, Mori T, Miyazaki H, Wada Y. Synlett 2004; 1219
  • 20 Saavedra LA, Vallejos CG, Kouznetsov VV, Gutierrez CM, Meléndez Gómez CM, Leonor Y, Méndez V, Jaimes JH. B. Synthesis 2010; 593
  • 21 Viau L, Senechal K, Maury O, Guegan JP, Dupau P, Toupet L, Bozec HL. Synthesis 2003; 577
  • 22 Janiak C, Deblon S, Uehlin L. Synthesis 1999; 959
  • 23 Aksenov AV, Goncharov VI. Chem. Heterocycl. Compd. (Engl. Transl.) 2008; 44: 12
  • 24 Hu YZ, Zhang G, Thummel RP. Org. Lett. 2003; 5: 2251
  • 25 Pucci D, Crispini A, Ghedini M, Szerb EI, Deda ML. Dalton Trans. 2011; 4614
  • 27 Nakano S. J. Pharm. Soc. Jpn. 1959; 79: 310
  • 28 Lekhok KC, Bhuyan D, Prajapati D, Boruah RC. Mol. Diversity 2010; 14: 841
  • 29 Jian FZ, Xiao JS, Feng WL, Meng L, Lu L. Z. Res. Chem. Intermed. DOI: 10.1007/s11164-012-0696-5
  • 30 6,6′-Dinitro-4,4′-diphenyl-2,3′-biquinolin-2′(1′H)-one (3g): To a stirred suspension of 2-amino-5-nitrobenzophenone (2d; 1 mmol) in acetic acid (20 mL), appropriate 3-acetyl-6-nitro-4-phenylquinolin-2(1H)-one (1d; 1 mmol) was added, followed by the addition of a catalytic amount of H2SO4 (0.5 equiv). The reaction mixture was heated to reflux for 3–5 h and the course of the reaction was monitored by TLC. After cooling to r.t., the mixture was poured into crushed ice (500 g) and the resulting residue was filtered to afford the desired product, which was purified by silica gel column chromatography (hexane–EtOAc, 7:3 v/v) to afford the target compound (72%) as a pale-yellow solid. Mp 254–258 °C. IR (KBr): 3311.18, 2865.7, 1822.4, 1653.66, 1532.17, 1334.5, 1258.32, 1069.33, 897.70, 703.89 cm–1. 1H NMR (400 MHz, DMSO-d 6): δ = 12.88 (s, 1 H, Q-NH), 8.63 (d, J = 2.5 Hz, 1 H, ArH), 8.42–8.45 (m, 2 H, ArH), 8.11 (d, J = 9.0 Hz, 1 H, ArH), 7.98 (d, J = 2.5 Hz, 1 H, ArH), 7.61–7.65 (m, 5 H, ArH), 7.46 (dd, J = 1.5, 8 Hz, 2 H, ArH), 7.33–7.36 (m, 5 H, ArH). 13C NMR (100 MHz, DMSO-d 6): δ = 161.36, 158.77, 150.02, 149.08, 145.87, 143.61, 142.16, 136.31, 134.45, 132.98, 131.69, 129.88, 129.58, 129.04, 128.77, 125.86, 123.93, 113.33, 119.71, 117.21. MS: m/z = 514 [M + H]. Anal. Calcd for C30H18N4O5: C, 70.03; H, 3.53; N, 10.89. Found: C, 69.98; H, 3.55; N, 10.92%.
  • 31 Xuegang C, Dongfang Q, Liang M, Xanxiang C, Yanhou G, Zhiyuan X, Lixiang W. Transition Met. Chem. 2006; 31: 639
  • 32 7-Methoxy-3-(4-phenylquinolin-2-yl)-2H-chromen-2-one (5g): To a stirred suspension of 2-aminobenzophenone (2a; 1 mmol) in acetic acid (20 mL), appropriate 3-acetyl-7-methoxy-2H-chromen-2-one (4b; 1 mmol) was added, followed by the addition of a catalytic amount of H2SO4 (0.5 equiv). The reaction mixture was heated to reflux for 3–5 h, then the course of the reaction was monitored by TLC. After cooling to r.t., the mixture was poured into crushed ice (500 g); the resulting residue was filtered to afford the desired product, which was purified by silica gel column chromatography (hexane–EtOAc, 8:2 v/v) to afford the target compound (82%) as a pale-green solid. Mp 216–220 °C. IR (KBr): 3059.51, 1718.26, 617.02, 1583.27, 1502.28, 1358.6, 1237.11, 1187.94, 1021.12, 834.06, 703.89 cm–1; 1H NMR (400 MHz, DMSO-d 6): δ = 8.99 (s, 1 H, C4-H), 8.40 (s, 1 H, C4–H), 8.22 (d, J = 8.50 Hz, 1 H, ArH), 7.97 (d, J = 8.50 Hz, 1 H, ArH), 7.76 (t, J = 8.00 Hz, 1 H, ArH), 7.51–7.60 (m, 6 H, ArH), 6.95 (d, J = 2.00 Hz, 1 H, ArH), 6.93 (dd, J = 2.50, 10.00 Hz, 1 H, ArH). 13C NMR (100 MHz, DMSO-d 6): δ = 163.46, 160.80, 156.23, 152.16, 148.69, 148.52, 143.82, 138.22, 130.08, 129.76, 129.74, 129.48, 128.53, 128.38, 126.65, 126.26, 125.79, 122.57, 121.81, 113.41, 113.19, 100.31, 55.86; MS: m/z = 379 [M + H]. Anal. Calcd for C25H17NO3: C, 79.14; H, 4.52; N, 3.69. Found: C, 7.19; H, 4.49; N, 3.71%.
  • 33 Cif files for 5f and 5g have been deposited with the Cambridge Crystallographic Data Centre as CCDC-895741 (5f) and 890933 (5g). Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK. [Fax: +44(1223)336033 or e-mail: deposit@ccdc.cam.ac.uk].