Synthesis 2012; 44(22): 3543-3549
DOI: 10.1055/s-0032-1317472
paper
© Georg Thieme Verlag Stuttgart · New York

Novel One-Pot Synthesis of 2-Substituted 3-Alkoxyisoindolin-1-imine Deri­vatives from 2-Cyanobenzaldehyde, Amine, and Alcohol

Sida Shen
a   School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. of China
,
Xingyu Xu
b   Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. of China   Fax: +86(21)20231965   Email: mlei@mail.shcnc.ac.cn   Email: simmhulh@mail.shcnc.ac.cn
,
Min Lei*
b   Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. of China   Fax: +86(21)20231965   Email: mlei@mail.shcnc.ac.cn   Email: simmhulh@mail.shcnc.ac.cn
,
Lihong Hu*
a   School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. of China
b   Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. of China   Fax: +86(21)20231965   Email: mlei@mail.shcnc.ac.cn   Email: simmhulh@mail.shcnc.ac.cn
› Author Affiliations
Further Information

Publication History

Received: 09 August 2012

Accepted after revision: 24 September 2012

Publication Date:
16 October 2012 (online)


Abstract

A novel, one-pot procedure has been developed for the synthesis of 2-substituted 3-alkoxyisoindolin-1-imine derivatives via three-component condensation of 2-cyanobenzaldehyde, amine, and alcohol. The efficient and convenient reaction conditions provide the corresponding products from various substrates in good yields (65–96%) catalyzed by acetic acid. The straightforward procedure is a valid contribution to methods for the synthesis of isoindolin-1-imine derivatives.

Supporting Information

 
  • References

    • 1a Jiaang W, Chen Y, Hsu T, Wu S, Chien C, Chang C, Chang S, Lee S, Chen X. Bioorg. Med. Chem. Lett. 2005; 15: 687
    • 1b Müller A, Höfner G, Renukappa-Gutke T, Parsons CG, Wanner KT. Bioorg. Med. Chem. Lett. 2011; 21: 5795
    • 1c Norman MH, Minick DJ, Rigdon GC. J. Med. Chem. 1996; 39: 149
    • 1d Luo W, Yu Q, Salcedo I, Holloway HW, Lahiri DK, Brossi A, Tweedie D, Greig NH. Bioorg. Med. Chem. 2011; 19: 3965
    • 2a Kundu NG, Khan MW. Tetrahedron 2000; 56: 4777
    • 2b Botero Cid HM, Tränkle C, Baumann K, Pick R, Mies-Klomfass E, Kostenis E, Mohr K, Holzgrabe U. J. Med. Chem. 2000; 43: 2155
    • 2c Holzgrabe U, Bender W, Botero Cid HM, Staudt M, Pick R, Pfletschinger C, Balatková E, Tränkle C, Mohr K. Pharm. Acta Helv. 2000; 74: 149
  • 3 Nguyen KT, Claiborne CF, McCauley JA, Libby BE, Claremon DA, Bednar RA, Mosser SD, Gaul SL, Connolly TM, Condra CL, Bednar B, Stump GL, Lynch JJ, Koblan KS, Liverton NJ. Bioorg. Med. Chem. Lett. 2007; 17: 3997
    • 4a Zhang H, Maryanoff B, White K, Yabut SC, Ye H, Chen C. US 20110105490, 2011 ; Chem. Abstr. 2011, 154, 557419.
    • 4b Clark R, Takemura A, Watanabe N, Asano O, Nagakura T, Tabata K. US 20090270433, 2009 ; Chem. Abstr. 2009, 150, 352175.
  • 5 Sović I, Stilinović V, Kaitner B, Kraljević-Pavelić S, Bujak M, Cujak K, Novak P, Karminski-Zamola G. J. Mol. Struct. 2011; 1006: 259
    • 6a Shimomura N, Sasho M, Kayono A, Kazuhiro Y, Masahiko T, Kuroda H, Furukawa K. US 7375236, 2008 ; Chem. Abstr. 2008, 144, 311793.
    • 6b Sato R, Nakayama M, Yuzawa Y, Goto T, Saito M. Chem. Lett. 1985; 1887
    • 6c Luo W, Yu Q, Salcedo I, Holloway HW, Tweedie D, Greig NH, Lahiri DK, Brossi A. Bioorg. Med. Chem. 2011; 19: 3965
    • 6d Nan’ya S, Tange T, Maekawa E. J. Heterocycl. Chem. 1985; 22: 449
    • 7a Xiao Z, Lei M, Hu L. Tetrahedron Lett. 2011; 52: 7099
    • 7b Liu J, Lei M, Hu L. Green Chem. 2012; 14: 840
    • 7c Lei M, Ma L, Hu L. Tetrahedron Lett. 2009; 50: 6393
    • 7d Lei M, Ma L, Hu L. Tetrahedron Lett. 2010; 51: 4746