Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2012; 23(18): 2643-2646
DOI: 10.1055/s-0032-1317445
DOI: 10.1055/s-0032-1317445
letter
Azide- and Alkyne-Functionalised α- and β3-Amino Acids
Further Information
Publication History
Received: 14 August 2012
Accepted after revision: 20 September 2012
Publication Date:
12 October 2012 (online)
Abstract
The synthesis and full characterisation of bifunctional β3-amino acids that have side chains functionalised with terminal azides (S)-4 and (R)-4 or acetylenes 5 and 6 is reported for the first time. The building blocks incorporate a turn-inducing β3-segment and a side chain that can be functionalised further, for example, through copper-catalysed Huisgen cycloaddition. Moreover, the corresponding α-amino acids 1 and 3 have been synthesised and characterised. All amino acid building blocks were of high optical purity as demonstrated by derivatisation and subsequent NMR analysis.
Key words
alkynes - azides - amino acids - diazotransfer - Arndt–Eistert homologation - peptidomimeticsSupporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett. Included are detailed experimental procedures, 1H and 13C NMR spectra.
- Supporting Information
-
References and Notes
- 1 Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. Angew. Chem. Int. Ed. 2002; 41: 2596
- 2 Tornoe CW, Christensen C, Meldal M. J. Org. Chem. 2002; 67: 3057
- 3 Tornoe CW, Meldal M In Peptides 2001 . American Peptide Society and Kluwer Academic Publishers; San Diego: 2001: 263
- 4 Johansson H, Pedersen DS. Eur. J. Org. Chem. 2012; 4267
- 5 Soares da Costa TP, Tieu W, Yap MY, Pendini NR, Polyak SW, Sejer Pedersen D, Morona R, Turnidge JD, Wallace JC, Wilce MC. J, Booker GW, Abell AD. J. Biol. Chem. 2012; 287: 17823
- 6 Stanley NJ, Pedersen DS, Nielsen B, Kvist T, Mathiesen JM, Bräuner-Osborne H, Taylor DK, Abell AD. Bioorg. Med. Chem. Lett. 2010; 20: 7512
- 7 Buysse K, Farard J, Nikolaou A, Vanderheyden P, Vauquelin G, Pedersen DS, Tourwè D, Ballet S. Org. Lett. 2011; 13: 6468
- 8 Pedersen DS, Abell A. Eur. J. Org. Chem. 2011; 2399
- 9 Seebach D, Gardiner J. Acc. Chem. Res. 2008; 41: 1366
- 10 Horne WS, Gellman SH. Acc. Chem. Res. 2008; 41: 1399
- 11 Horne WS, Boersma MD, Windsor MA, Gellman SH. Angew. Chem. Int. Ed. 2008; 47: 2853
- 12 Horne WS, Johnson LM, Ketas TJ, Klasse PJ, Lu M, Moore JP, Gellman SH. Proc. Natl. Acad. Sci. U.S.A 2009; 106: 14751
- 13 Gloriam D, Wellendorph P, Johansen L, Thomsen A, Phonekeo K, Pedersen DS, Bräuner-Osborne H. Chem. Biol. 2011; 18: 1489
- 14 Tomboly C, Ballet S, Feytens D, Kover KE, Borics A, Lovas S, Al-Khrasani M, Furst Z, Toth G, Benyhe S, Tourwe D. J. Med. Chem. 2008; 51: 173
- 15 Holland-Nell K, Meldal M. Angew. Chem. Int. Ed. 2011; 50: 5204
- 16 Pinsker A, Einsiedel J, Harterich S, Waibel R, Gmeiner P. Org. Lett. 2011; 13: 3502
- 17 Larregola M, Lequin O, Karoyan P, Guinvarc’h D, Lavielle S. J. Pept. Sci. 2011; 17: 632
- 18 Garner J, Harding MM. Org. Biomol. Chem. 2007; 5: 3577
- 19 Cantel S, Isaad AL. C, Scrima M, Levy JJ, DiMarchi RD, Rovero P, Halperin JA, D’Ursi AM, Papini AM, Chorev M. J. Org. Chem. 2008; 73: 5663
- 20 Schafmeister CE, Po J, Verdine GL. J. Am. Chem. Soc. 2000; 122: 5891
- 21 Ebert M.-O, Gardiner J, Ballet S, Abell AD, Seebach D. Helv. Chim. Acta 2009; 92: 2643
- 22 Ingale S, Dawson PE. Org. Lett. 2011; 13: 2822
- 23 Kawamoto SA, Coleska A, Ran X, Yi H, Yang CY, Wang S. J. Med. Chem. 2011; 55: 1137
- 24 Pehere, A. D.; Pietsch, M.; Gütschow, M.; Neilsen, P. M.; Callen, D. F.; Pedersen, D. S.; Nguyen, S.; Sykes, M.; Morton, J. D.; Abell, A. D.; manuscript submitted for publication.
- 25 Chen JY, Nikolovska-Coleska Z, Yang CY, Gomez C, Gao W, Krajewski K, Jiang S, Roller P, Wang SM. Bioorg. Med. Chem. Lett. 2007; 17: 3939
- 26 Abell AD, Jones MA, Coxon JM, Morton JD, Aitken SG, McNabb SB, Lee HY. Y, Mehrtens JM, Alexander NA, Stuart BG, Neffe AT, Bickerstaffe R. Angew. Chem. Int. Ed. 2009; 48: 1455
- 27 Goddard-Borger ED, Stick RV. Org. Lett. 2007; 9: 3797
- 28 We discovered that imidazole-1-sulfonyl azide hydrochloride (8) when stored in a desiccator at r.t. decomposed over the course of 1–2 months to form a viscous black tar. Later Goddard-Borger and Stick published a safety update addressing this and other reagent related issues, attributing the decomposition to slow water hydrolysis of 8 and formation of hydrazoic acid.29 More recently, Goddard-Borger and co-workers evaluated the stability of a wide range of imidazole sulfonyl azide salts and found that the hydrogensulfate and tetrafluoroborate salts are safe alternatives to the hydrochloride salt 8.30 Herein we report the use of the hydrochloride salt 8 that we have found to be perfectly stable (>10 months) when dried rigorously in a vacuum desiccator over KOH and stored at –20 °C. However, based on the reports by Goddard-Borger and co-workers we recommend that the hydrogensulfate salt be used for reproducing the experiments reported herein.
- 29 Goddard-Borger ED, Stick RV. Org. Lett. 2011; 13: 2514
- 30 Fischer N, Goddard-Borger ED, Greiner R, Klapötke TM, Skelton BW, Stierstorfer J. J. Org. Chem. 2012; 77: 1760
- 31 Despite being a useful reagent diazomethane is underutilised due to safety concerns. Diazomethane is indeed highly toxic and explosive. However, with careful use of a modern diazomethane distillation kit the synthesis of diazomethane in Et2O is simple, safe, and fast. Diazomethane distillation kits with clear-seal joints are available from many glassware manufacturers. We commonly employ a mini-Diazald apparatus available from Sigma-Aldrich that produces up to 1 mmol of diazomethane.
- 32 Many azido-functionalised α-amino acids are commercially available. However, to the best of our knowledge no optically active azido-functionalised β3-amino acids are available.
- 33a Zhan J.-R, Chen T.-Y, Liu B. Huaxue Shiji 2004; 26: 137
- 33b Liao B.-R, Hong Y.-Y, Xu J, Liu B. Youji Huaxue 2004; 24: 63
- 34 Attempting the reaction on the methyl ester derivative of 15 under the same reaction conditions led to the formation of several side products, reduced yields, and significant racemisation.
Both enantiomers of amino acid 5 are commercially available from a number of vendors and according to Chemical Abstract (CAS) have been reported in two Chinese papers: