Synlett 2013; 24(8): 943-946
DOI: 10.1055/s-0032-1316902
letter
© Georg Thieme Verlag Stuttgart · New York

Synthetic Approach to and Characterization of a Fullerene–DTBT–Fullerene Triad

Maurizio D’Auria*
a   Dipartimento di Scienze, Università della Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy   Fax: +39(0971)205678   Email: maurizio.dauria@unibas.it
,
Ambra Guarnaccio
a   Dipartimento di Scienze, Università della Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy   Fax: +39(0971)205678   Email: maurizio.dauria@unibas.it
b   CNR-IMIP U.O.S. Potenza, Zona Industriale, 85100 Tito Scalo (PZ), Italy
,
Rocco Racioppi
a   Dipartimento di Scienze, Università della Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy   Fax: +39(0971)205678   Email: maurizio.dauria@unibas.it
,
Antonio Santagata
b   CNR-IMIP U.O.S. Potenza, Zona Industriale, 85100 Tito Scalo (PZ), Italy
,
Roberto Teghil
a   Dipartimento di Scienze, Università della Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy   Fax: +39(0971)205678   Email: maurizio.dauria@unibas.it
› Author Affiliations
Further Information

Publication History

Received: 01 March 2013

Accepted after revision: 17 March 2013

Publication Date:
05 April 2013 (online)


Abstract

The synthesis of a new fullerene–dithienylbenzo[c]thiophene (DTBT)–fullerene triad is reported. The synthetic approach involves the synthesis of a DTBT unit, a Sonogashira reaction to introduce two acetylenic groups, and the coupling with fullerene. The product showed an absorption at λ = 485 nm and a fluorescence band at λ = 575 nm.

Supporting Information

 
  • References and Notes

  • 1 Katz HE, Bao Z, Gilat SL. Acc. Chem. Res. 2001; 34: 359
    • 2a Waltman RJ, Bargon J. Can. J. Chem. 1986; 64: 76
    • 2b Patil AO, Heeger AJ, Wudl F. Chem. Rev. 1988; 88: 183
    • 2c Roncali J. Chem. Rev. 1997; 97: 173
    • 2d Kraft A, Brimsdale AC, Holmes AB. Angew. Chem. Int. Ed. 1998; 37: 402
    • 2e McCullough RD. Adv. Mater. 1998; 10: 93
    • 2f Horowitz G. Adv. Mater. 1998; 10: 365
    • 2g Garnier F. Acc. Chem. Res. 1999; 32: 209
    • 2h Roncali J. J. Mat. Chem. 1999; 9: 1875
    • 2i Bao Z. Adv. Mater. 2000; 12: 227
    • 2j Groenendaal LB, Jonas F, Freitag D, Pielartzik H, Reynolds JR. Adv. Mater. 2000; 12: 481
    • 2k Ma H, Jen AK.-Y. Adv. Mater. 2001; 13: 1201
    • 2l Otsubo T, Aso Y, Takimiya K. Bull. Chem. Soc. Jpn. 2001; 74: 1789
    • 2m van Mullekom HA. M, Vekemans JA. J. M, Havinga EE, Meijer EW. Mater. Sci. Eng. 2001; 32: 1
    • 2n Otsubo T, Aso Y, Takimiya K. J. Mater. Chem. 2002; 12: 2565
    • 2o Kelly TW, Baude PF, Gerlach C, Ender DE, Muyres D, Haase MA, Vogel DE, Theiss SD. Chem. Mater. 2004; 16: 4413
    • 2p Newman CR, Frisbie CD, de Silva Filho DA, Brédas J.-L, Ewbank PC, Mann KR. Chem. Mater. 2004; 16: 4436
    • 2q Ling MM, Bao Z. Chem. Mater. 2004; 16: 4824
    • 2r Winder C, Sariciftci NS. J. Mater. Chem. 2004; 14: 1077
    • 2s Barbarella G, Melucci M, Sotgiu G. Adv. Mater. 2005; 17: 1581
    • 2t Facchetti A, Yoon M.-H, Marks TJ. Adv. Mater. 2005; 17: 1705
    • 2u Perepichka IF, Perepichka DF, Meng H, Wudl F. Adv. Mater. 2005; 17: 2281
    • 2v Sun Y, Liu Y, Zhu D. J. Mater. Chem. 2005; 15: 53
    • 2w Anthony JE. Chem. Rev. 2006; 106: 5028
    • 2x Roncali J, Leriche P, Cravino A. Adv. Mater. 2007; 19: 2045
    • 2y Murphy AR, Fréchet JM. J. Chem. Rev. 2007; 107: 1066
    • 2z Bundgaard W, Krebs FC. Sol. Energy Mater. Sol. Cells 2007; 91: 954
    • 3a Ong BS, Wu Y, Li Y, Liu P, Pan H. Chem. Eur. J. 2008; 14: 4766
    • 3b Arias AC, MacKenzie JD, McCulloch I, Rivnay J, Salleo A. Chem. Rev. 2010; 110: 3
    • 3c D’Auria M. Adv. Heterocycl. Chem. 2011; 104: 127
    • 4a Lorcy D, Cava MP. Adv. Mater. 1992; 4: 562
    • 4b Bauerle P, Gotz G, Emerle P, Port H. Adv. Mater. 1992; 4: 564
    • 4c Mohanakrishnan AK, Lakshmikantham MV, McDougal C, Cava MP, Baldwin JW, Metzger RM. J. Org. Chem. 1998; 63: 3105
    • 4d Kiebooms R, Hoogmartens I, Adriaensens P, Vanderzande D, Gelan J. Macromolecules 1995; 28: 4961
  • 5 Ertasa E, Ozturkb T. Tetrahedron Lett. 2004; 45: 3405
  • 6 Musmanni S, Ferraris JP. J. Chem. Soc., Chem. Commun. 1993; 172
  • 7 Piancatelli G, Scettri A, D’Auria M. Synthesis 1982; 245
  • 8 1,2-Phenylenebis(2-thienylmethanol) (2) 1H NMR (400 MHz, CDCl3): δ = 7.44 (m, 2 H), 7.29 (m, 4 H), 7.17 (m, 2 H), 6.85 (m, 2 H), 6.695 (m, 2 H), 6.14 (s, 2 H). 13C NMR (100 MHz, CDCl3): δ = 147.27, 140.58, 128.78, 127.92, 127.07, 125.68, 125.31, 70.04. 1,2-Di-(2-thienoyl)benzene (3) 1H NMR (400 MHz, CDCl3): δ = 7.725 (m, 2 H), 7.635 (m, 4 H), 7.455 (m, 2 H), 7.055 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 188.50, 144.28, 139.55, 135.36, 135.18, 130.83, 129.44, 128.23. GC–MS (EI): m/z = 298.0 [M+]. FT-IR (KBr pellet): νmax = 1620, 1585, 1570, 1510, 1410 cm–1. 1,3-Di-(2-thienyl)benzo[c]thiophene (4) 1H NMR (400 MHz, CDCl3): δ = 7.195 (m, 4 H), 7.195 (m, 3 H), 7.000 (m, 3 H). 13C NMR (100 MHz, CDCl3): δ = 135.57, 135.24, 127.86, 126.46, 125.57, 125.52, 124.76, 121.49. GC–MS (EI): m/z = 298.0 [M+]. UV-Vis (CHCl3): λmax = 435 nm. FT-IR (KBr pellet): νmax = 1530, 1216, 1182, 841, 738 cm–1.
  • 9 Mitschke U, Bäuerle P. J. Chem. Soc., Perkin Trans. 1 2001; 740
  • 10 Kisselev R, Thelakkat M. Chem. Commun. 2002; 1530
  • 11 Jung YK, Kim H, Park J.-H, Lee J, Lee SK, Lee YS, Shim H.-K. J. Polym. Sci., Part A: Polym. Chem. 2008; 46: 3573
  • 12 1,3-Bis(5-bromo-2-thienyl)benzo[c]thiophene (5) 1H NMR (400 MHz, CDCl3): δ = 7.87 (dd, J = 4 Hz, 2 H), 7.15 (d, J = 4 Hz, 2 H), 7.07 (m, 4 H). 13C NMR (100 MHz, CDCl3): δ = 143.45, 136.99, 135.64, 130.95, 126.25, 125.50, 121.46, 112.59. GC–MS (EI): m/z = 455.8 [M+]. UV-Vis (CHCl3): λmax = 440 nm. FT-IR (KBr pellet): νmax = 3062, 1529, 1489, 1433, 1190, 969, 788, 778, 734, 699, 582 cm–1. 1,3-Bis[5-(2-trimethylsilylethynyl-2-thienyl)]benzo[c]-thiophene 1H NMR (CDCl3, 400 MHz): δ = 7.92 (dd, J = 4 Hz, 2 H), 7.22 (d, J = 4 Hz, 2 H), 7.15 (m, 4 H), 0.27 (s, 18 H). 13C NMR (100 MHz, CDCl3): δ = 137.18, 135.71, 133.58, 126.70, 125.64, 125.24, 123.17, 121.78, 101.20, 97.50, 0.10. 1,3-Bis(5-ethynyl-2-thienyl)benzo[c]thiophene (6) 1H NMR (500 MHz, CDCl3): δ = 7.94 (dd, J = 5 Hz, 2 H), 7.35 (d, J = 5 Hz, 2 H), 7.25 (m, 4 H), 3.49 (s, 2 H). 13C NMR (125 MHz, CDCl3): δ = 137.23, 135.67, 133.90, 126.44, 125.77, 125.02, 121.85, 121.47, 104.88, 82.94.
  • 13 Benincori T, Brenna E, Sannicolò F, Trimarco L, Zotti G, Sozzani P. Angew. Chem., Int. Ed. Engl. 1996; 35: 648
  • 14 Komatsu K, Murata Y, Takimoto N, Mori S, Sugita N, Wan TS. M. J. Org. Chem. 1994; 59: 6101
  • 15 Lafleur-Lambert A, Rondeau-Gagné S, Soldera A, Morin JF. Tetrahedron Lett. 2011; 52: 5008
  • 16 1,3-Bis(5-ethynyl-2-thienyl)benzo[c]thiophene–(C60)2 (7) 1H NMR (400 MHz, CDCl3): δ = 8.04 (m, 2 H), 7.93 (m, 2 H), 7.70, (m, 2 H), 7.38 (s, 2 H), 7.15 (m, 2 H), 6.98 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 143.5, 142.3, 136.9, 134.8, 133.4, 130.4, 129.2, 129.1, 128.0, 128.8, 128.2, 128.1, 128.0, 127.9, 127.8, 127.6, 127.4, 127.3, 127.2, 127.1, 126.5, 126.3, 126.2, 126.27, 125.3, 125.31, 124.8, 124.6, 124.5, 125.5, 124.4, 124.1, 123.9, 123.7, 123.3, 123.2, 107.5, 79.5, 62.3, 54.9.
  • 17 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision A.1 . Gaussian Inc; Wallingford (CT, USA): 2009