Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2013; 24(8): 981-986
DOI: 10.1055/s-0032-1316896
DOI: 10.1055/s-0032-1316896
letter
Synthesis of α,β-Alkynyl Esters and Unsymmetrical Maleate Esters Catalyzed by Pd/C; An Efficient Phosphine-Free Catalytic System for Oxidative Alkoxycarbonylation of Terminal Alkynes
Further Information
Publication History
Received: 27 February 2013
Accepted after revision: 17 March 2013
Publication Date:
28 March 2013 (online)
Abstract
Pd/C-catalyzed oxidative alkoxycarbonylation of terminal alkynes using alcohols in the presence of tetrabutylammonium iodide under CO/O2 (5:1 atm) has been investigated. The desired α,β-alkynyl esters and unsymmetrical maleate esters are formed in good to excellent yields under different reaction conditions. The present protocol eliminates the use of phosphine ligands and has straightforward catalyst recovery. The catalyst was recycled up to six times without significant loss of catalytic activity.
Supporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.
- Supporting Information
-
References and Notes
- 1a Lee Y, Kang Y, Chung Y. J. Org. Chem. 2009; 74: 7922
- 1b Welbes LL, Lyons TW, Cychosz KA, Sanford MS. J. Am. Chem. Soc. 2007; 129: 5836
- 1c Pi S.-F, Tang B.-X, Li J.-H, Liu Y.-L, Liang Y. Org. Lett. 2009; 11: 2309
- 1d Tsujihara T, Takenaka K, Onitsuka K, Hatanaka M, Sasai H. J. Am. Chem. Soc. 2009; 131: 3452
- 1e Rayabarapu DK, Tunge JA. J. Am. Chem. Soc. 2005; 127: 13510
- 1f Gao H, Zhang J. Chem. Eur. J. 2012; 18: 2777
- 1g Huang L, Wang Q, Liu X, Jiang H. Angew. Chem. Int. Ed. 2012; 51: 1
- 1h Yamamoto H, Maruoka K. J. Am. Chem. Soc. 1981; 103: 6133
- 1i Jana R, Tunge JA. J. Org. Chem. 2011; 76: 8376
- 1j Guzikowski AP, Tamiz AP, Acosta-Burruel M, Hong-Bae S, Cai SX, Hawkinson JE, Keana JF. W, Kesten SR, Shipp CT, Tran M, Whittemore ER, Woodward RM, Wright JL, Zhou Z.-L. J. Med. Chem. 2000; 43: 984
- 1k Kwong CK.-W, Fu MY, Law HC.-H, Toy PH. Synlett 2010; 2617
-
2a Zhang W.-Z, Li W.-J, Zhang X, Zhou H, Lu X.-B. Org. Lett. 2010; 12: 4748
- 2b Inamoto K, Asano N, Kobayashi K, Yonemoto M, Kondo Y. Org. Biomol. Chem. 2012; 10: 1514
- 2c Fukue Y, Oi S, Inoue Y. J. Chem. Soc., Chem. Commun. 1994; 2091
- 2d Gooßen LJ, Rodríguez N, Manjolinho F, Lange PP. Adv. Synth. Catal. 2010; 352: 2913
- 3a Tsuji J, Takahashi M, Takahashi T. Tetrahedron Lett. 1980; 21: 849
- 3b Sakurai Y, Sakaguchi S, Ishii Y. Tetrahedron Lett. 1999; 40: 1701
- 3c Izawa Y, Shimizu I, Yamamoto A. Bull. Chem. Soc. Jpn. 2004; 77: 2033
- 4a Heck RF. J. Am. Chem. Soc. 1972; 94: 2712
- 4b Alper H, Despeyroux B, Woell JB. Tetrahedron Lett. 1983; 24: 5691
- 4c Li J, Jiang H, Jia L. Synth. Commun. 1999; 29: 3733
- 4d Novakovic K, Mukherjee A, Willis M, Wrighta A, Scottb S. Phys. Chem. Chem. Phys. 2009; 11: 9044
- 4e Gabriele B, Costa M, Salerno G, Chiusoli GP. J. Chem. Soc., Perkin Trans. 1 1994; 83
- 4f Li J, Jiang H, Chen M. Synth. Commun. 2001; 31: 3131
- 5a Wu X.-F, Sundararaju B, Neumann H, Dixneuf PH, Beller M. Chem. Eur. J. 2011; 17: 106
- 5b Liu Q, Zhang H, Lei A. Angew. Chem. Int. Ed. 2011; 50: 10788
- 6a Molnar A. Chem. Rev. 2011; 111: 2251
- 6b Liu J, Chen J, Xia C. J. Catal. 2008; 253: 50
- 6c Li F, Xia C. J. Catal. 2004; 227: 542
- 6d Mori S, Yanase T, Aoyagi S, Monguchi Y, Maegawa T, Sajiki H. Chem. Eur. J. 2008; 14: 6994
- 6e Mori S, Takubo M, Yanase T, Maegawa T, Monguchi Y, Sajiki H. Adv. Synth. Catal. 2010; 352: 1630
- 6f Gupte SP, Chaudhari RV. J. Catal. 1988; 114: 246
- 7 Gadge ST, Khedkar MV, Lanke SR, Bhanage BM. Adv. Synth. Catal. 2012; 354: 2049
- 8a Khedkar MV, Khan SR, Sawant DN, Bagal DB, Bhanage BM. Adv. Synth. Catal. 2011; 353: 3415
- 8b Sawant DN, Wagh YS, Bhatte KD, Bhanage BM. J. Org. Chem. 2011; 76: 5489
- 8c Tambade PJ, Patil YP, Bhanushali MJ, Bhanage BM. Synthesis 2008; 2347
- 8d Khedkar MV, Tambade PJ, Qureshi ZS, Bhanage BM. Eur. J. Org. Chem. 2010; 6981
- 8e Qureshi ZS, Deshmukh KM, Tambade PJ, Bhanage BM. Synthesis 2011; 243
- 8f Khedkar MV, Khan SR, Dhake KP, Bhanage BM. Synthesis 2012; 44: 2623
- 9 See Table 1 of the Supporting Information for catalyst screening and loading.
- 10a Gupte SP, Chaudhari RV. Ind. Eng. Chem. Res. 1992; 31: 2069
- 10b Gabriele B, Salerno G, Costa M. Top. Organomet. Chem. 2006; 18: 239
- 10c Maitlis PM, Haynes A, James BR, Catellanic M, Chiusoli GP. Dalton Trans. 2004; 3904
- 12 Oxidative Alkoxycarbonylation of Terminal Alkynes; General Procedure: To a 100 mL stainless steel autoclave, the alk-1-yne (1 mmol), the alcohol (0.5 mL), 10% Pd/C (10 mol%), TBAI (0.6 mmol), and 1,4-dioxane (10 mL) were added. The autoclave was closed and pressurized with oxygen (1 atm) and CO (5 atm) without flushing. The reaction mixture was stirred (550 rpm) and heated at 80 °C for 8 h. The reactor was then cooled to r.t. and the pressure released. The reaction mixture was filtered and the filtrate was washed with saturated sodium thiosulphate (3 × 4 mL), dried over Na2SO4, filtered and the solvent evaporated. The crude product was purified by column chromatography. Ethyl 3-[4(Trifluoromethyl)phenyl]propiolate (3j): 13 Yield: 83%; colorless liquid; IR (neat): 2253, 1711 cm–1; GCMS (EI, 70 eV): m/z (%) = 242 (7) [M+], 223 (3), 197 (100), 170 (67), 147 (7); 1H NMR (300 MHz, CDCl3): δ = 7.71–7.59 (m, 4 H, ArCH), 4.32 (q, J = 6.9 Hz, 2 H, CH 2CH3), 1.46 (t, J = 6.9 Hz, 3 H, CH2CH 3). Ethyl 3-(Pyren-2-yl)propiolate (3l): Yield: 85%; yellowish solid; IR (KBr): 2205, 1704 cm–1; 1H NMR (400 MHz, CDCl3): δ = 8.57 (d, J = 9.1 Hz, 1 H, ArCH), 8.27–8.04 (m, 8 H, ArCH), 4.40 (q, J = 7.1 Hz, 2 H, CH 2CH3), 1.44 (t, J = 7.1 Hz, 3 H, CH2CH 3); 13C NMR (75 MHz, CDCl3): δ = 154.30, 133.26, 132.63, 130.69, 130.63, 130.48, 129.14, 129.02, 126.74, 126.23, 126.13, 125.99, 124.53, 124.11, 123.76, 123.53, 113.08, 85.94, 85.59, 62.05, 14.17; HRMS (ESI): m/z calcd. for [C21H14O2Na]+: 321.0886; found: 321.0879. Diethyl 2-(Pyridin-3-yl)maleate (4g): Yield: 89%; yellowish liquid; IR (neat): 1723, 1629 cm–1; 1H NMR (300 MHz, CDCl3): δ = 8.76 (d, J = 1.8 Hz, 1 H, ArCH), 8.67–8.65 (m, 1 H, ArCH), 7.86–7.82 (m, 1 H, ArCH), 7.41–7.37 (m, 1 H, ArCH), 6.35 (s, 1 H, COCH=CCO), 4.43 (q, J = 6.9 Hz, 2 H, CH3CH 2O), 4.26 (q, J = 6.9 Hz, 2 H, CH3CH 2O), 1.38 (t, J = 6.9 Hz, 3 H, CH 3CH2O), 1.33 (t, J = 6.9 Hz, 3 H, CH 3CH2O); 13C NMR (75 MHz, CDCl3): δ = 166.92, 164.44, 150.60, 147.40, 145.12, 134.60, 130.11, 123.92, 120.14, 62.32, 61.38, 14.22, 14.06; GCMS (EI, 70 eV): m/z (%) = 249 (13) [M+], 220 (78), 204 (55), 192 (16), 176 (91), 148 (100), 132 (25), 120 (18), 104 (56), 76 (33), 50 (24); HRMS (ESI): m/z calcd. for [C13H15O4N + H]+: 250.1074; found: 250.1070.
- 13 Butt G, Topsom RD. Spectrochim. Acta, Part A 1982; 38: 649