Subscribe to RSS
DOI: 10.1055/s-0032-1315378
Limbusstammzellen und ihre Nische: Bedeutung für biotechnologischen Gewebeersatz
Limbal Stem Cells and their Niche: Implications for Bioengineered Tissue ConstructsPublication History
eingereicht 19 June 2012
akzeptiert 28 August 2012
Publication Date:
15 October 2012 (online)
Zusammenfassung
Reparatur- und Regenerationsvorgänge des Hornhautepithels werden aus einem Reservoir unipotenter Progenitorzellen gespeist, welche in der basalen Epithelschicht am korneoskleralen Limbus lokalisiert sind. Geht diese Zellpopulation verloren, kommt es zu Störungen der Oberflächenintegrität, mit der möglichen Folge eines schmerzhaften Sehverlusts. Zur Therapie werden seit Ende der 1990er-Jahre kultivierte limbale Epithelzellen klinisch angewandt. Hierzu werden Limbusepithelzellen aus dem Partnerauge oder aus Spendergewebe entnommen, im Labor auf unterschiedlichen Trägern vermehrt und anschließend transplantiert. Dieser Vorgang entfernt die Progenitorzellen aus ihrem natürlich vorherrschenden Milieu. Jedoch herrscht weitgehend Konsens, dass umgebende Zellen und extrazelluläre Matrix wichtige Stimuli zur Verfügung stellen, welche für den Erhalt der Stammzelleigenschaften und für eine korrekte Ausdifferenzierung erforderlich sind. Neuere Ansätze versuchen daher, diese sogenannte „Stammzellnische“ auch ex vivo und nach erfolgter Transplantation bereitzustellen. Zugleich können Nischenfaktoren die Transdifferenzierung alternativer Progenitorzelltypen zu einem kornealen Phänotyp unterstützen und ermöglichen somit den Einsatz autologer Zellen auch bei beidseitiger Insuffizienz der Limbusregion. Für die Kultivierung, Transdifferenzierung und Transplantation der Spenderzellen wurden diverse biosynthetische Träger entwickelt. Die vorliegende Arbeit soll einen Überblick über die bislang verfügbaren und zum Teil klinisch angewendeten Konstrukte geben. Zusätzlich werden in der Entwicklung befindliche Konzepte zusammengefasst, welche mittels Integration putativer Nischenfaktoren in das Stammzell-Trägerkonstrukt eine Replikation der Stammzellnische erreichen sollen.
Abstract
Regeneration and repair of corneal epithelium rely on a reservoir of unipotent progenitor cells, which is situated within the basal epithelial layer at the corneoscleral limbus. If these cells are lost, corneal surface integrity is disturbed, which may lead to a painful loss of vision. Since the late 1990s cultivated grafts of limbal epithelium are being used therapeutically. Limbal epithelial cells are obtained from the fellow eye or from an allogeneic donor, propagated in culture on different types of carriers, and subsequently transplanted. This process entails removal of progenitor cells from their natural environment. However, surrounding cells and extracellular matrix are widely believed to provide important stimuli for stem cell maintenance and for correct differentiation. Therefore, new approaches aim at providing this so-called stem cell niche ex vivo and following transplantation. Niche factors can also drive transdifferentiation of alternative progenitor cell types towards a corneal phenotype. This permits the use of autologous cells in cases of bilateral limbal stem cell insufficiency. Several biosynthetic substrates have been devised for culture, transdifferentiation and transplantation of donor cells. This work intends to provide an overview of constructs that are currently available and to some extent clinically employed. In addition, a summary is given of novel concepts which aim at integrating putative niche factors into the stem cell carriers to replicate the stem cell niche.
-
Literatur
- 1 Davanger M, Evensen A. Role of the pericorneal papillary structure in renewal of corneal epithelium. Nature 1971; 229: 560-561
- 2 Cotsarelis G, Cheng SZ, Dong G et al. Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells. Cell 1989; 57: 201-209
- 3 Dua HS, Joseph A, Shanmuganathan VA et al. Stem cell differentiation and the effects of deficiency. Eye (Lond) 2003; 17: 877-885
- 4 Kobayashi A, Sugiyama K. In vivo corneal confocal microscopic findings of palisades of Vogt and its underlying limbal stroma. Cornea 2005; 24: 435-437
- 5 Dua HS, Shanmuganathan VA, Powell-Richards AO et al. Limbal epithelial crypts: a novel anatomical structure and a putative limbal stem cell niche. Br J Ophthalmol 2005; 89: 529-532
- 6 Schlötzer-Schrehardt U, Dietrich T, Saito K et al. Characterization of extracellular matrix components in the limbal epithelial stem cell compartment. Exp Eye Res 2007; 85: 845-860
- 7 Ljubimov AV, Burgeson RE, Butkowski RJ et al. Human corneal basement membrane heterogeneity: topographical differences in the expression of type IV collagen and laminin isoforms. Lab Invest 1995; 72: 461-473
- 8 Ordonez P, Di Girolamo N. Limbal epithelial stem cells: role of the niche microenvironment. Stem Cells 2012; 30: 100-107
- 9 Shimmura S, Miyashita H, Higa K et al. Proteomic analysis of soluble factors secreted by limbal fibroblasts. Mol Vis 2006; 12: 478-484
- 10 OʼCallaghan AR, Daniels JT, Mason C. Effect of sub-atmospheric oxygen on the culture of rabbit limbal epithelial cells. Curr Eye Res 2011; 36: 691-698
- 11 Xie HT, Chen SY, Li GG et al. Limbal epithelial stem/progenitor cells attract stromal niche cells by SDF-1/CXCR4 signaling to prevent differentiation. Stem Cells 2011; 29: 1874-1885
- 12 Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 1978; 4: 7-25
- 13 Secker GA, Daniels JT. Corneal epithelial stem cells: deficiency and regulation. Stem Cell Rev 2008; 4: 159-168
- 14 Blazejewska EA, Schlotzer-Schrehardt U, Zenkel M et al. Corneal limbal microenvironment can induce transdifferentiation of hair follicle stem cells into corneal epithelial-like cells. Stem Cells 2009; 27: 642-652
- 15 Ahmad S, Stewart R, Yung S et al. Differentiation of human embryonic stem cells into corneal epithelial-like cells by in vitro replication of the corneal epithelial stem cell niche. Stem Cells 2007; 25: 1145-1155
- 16 Rauz S, Saw VP. Serum eye drops, amniotic membrane and limbal epithelial stem cells–tools in the treatment of ocular surface disease. Cell Tissue Bank 2010; 11: 13-27
- 17 Kenyon KR, Tseng SC. Limbal autograft transplantation for ocular surface disorders. Ophthalmology 1989; 96: 709-722
- 18 Pellegrini G, Traverso CE, Franzi AT et al. Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet 1997; 349: 990-993
- 19 Shortt AJ, Secker GA, Notara MD et al. Transplantation of ex vivo cultured limbal epithelial stem cells: a review of techniques and clinical results. Surv Ophthalmol 2007; 52: 483-502
- 20 Meyer-Blazejewska EA, Kruse FE, Bitterer K et al. Preservation of the limbal stem cell phenotype by appropriate culture techniques. Invest Ophthalmol Vis Sci 2010; 51: 765-774
- 21 Meller D, Pires RT, Tseng SC. Ex vivo preservation and expansion of human limbal epithelial stem cells on amniotic membrane cultures. Br J Ophthalmol 2002; 86: 463-471
- 22 Hao Y, Ma DH, Hwang DG et al. Identification of antiangiogenic and antiinflammatory proteins in human amniotic membrane. Cornea 2000; 19: 348-352
- 23 Grueterich M, Espana EM, Tseng SC. Ex vivo expansion of limbal epithelial stem cells: amniotic membrane serving as a stem cell niche. Surv Ophthalmol 2003; 48: 631-646
- 24 Dietrich-Ntoukas T, Hofmann-Rummelt C, Kruse FE et al. Comparative analysis of the basement membrane composition of the human limbus epithelium and amniotic membrane epithelium. Cornea 2012; 31: 564-569
- 25 Levis H, Daniels JT. New technologies in limbal epithelial stem cell transplantation. Curr Opin Biotechnol 2009; 20: 593-597
- 26 Dua HS, Rahman I, Miri A et al. Variations in amniotic membrane: relevance for clinical applications. Br J Ophthalmol 2010; 94: 963-964
- 27 Kolli S, Lako M, Figueiredo F et al. Loss of corneal epithelial stem cell properties in outgrowths from human limbal explants cultured on intact amniotic membrane. Regen Med 2008; 3: 329-342
- 28 Deshpande P, Notara M, Bullett N et al. Development of a surface-modified contact lens for the transfer of cultured limbal epithelial cells to the cornea for ocular surface diseases. Tissue Eng Part A 2009; 15: 2889-2902
- 29 Di Girolamo N, Bosch M, Zamora K et al. A contact lens-based technique for expansion and transplantation of autologous epithelial progenitors for ocular surface reconstruction. Transplantation 2009; 87: 1571-1578
- 30 Rama P, Matuska S, Paganoni G et al. Limbal stem-cell therapy and long-term corneal regeneration. N Engl J Med 2010; 363: 147-155
- 31 Han B, Schwab IR, Madsen TK et al. A fibrin-based bioengineered ocular surface with human corneal epithelial stem cells. Cornea 2002; 21: 505-510
- 32 Neel EAA, Cheema U, Knowles JC et al. Use of multiple unconfined compression for control of collagen gel scaffold density and mechanical properties. Soft Matter 2006; 2: 986-992
- 33 Dravida S, Gaddipati S, Griffith M et al. A biomimetic scaffold for culturing limbal stem cells: a promising alternative for clinical transplantation. J Tissue Eng Regen Med 2008; 2: 263-271
- 34 Takezawa T, Ozaki K, Nitani A et al. Collagen vitrigel: a novel scaffold that can facilitate a three-dimensional culture for reconstructing organoids. Cell Transplant 2004; 13: 463-473
- 35 McIntosh Ambrose W, Salahuddin A, So S et al. Collagen Vitrigel membranes for the in vitro reconstruction of separate corneal epithelial, stromal, and endothelial cell layers. J Biomed Mater Res B Appl Biomater 2009; 90: 818-831
- 36 Brown RA, Wiseman M, Chuo C-B et al. Ultrarapid engineering of biomimetic materials and tissues: fabrication of nano- and microstructures by plastic compression. Advanced Functional Materials 2005; 15: 1762-1770
- 37 Levis HJ, Brown RA, Daniels JT. Plastic compressed collagen as a biomimetic substrate for human limbal epithelial cell culture. Biomaterials 2010; 31: 7726-7737
- 38 Dellatore SM, Garcia AS, Miller WM. Mimicking stem cell niches to increase stem cell expansion. Curr Opin Biotechnol 2008; 19: 534-540
- 39 Yan J, Qiang L, Gao Y et al. Effect of fiber alignment in electrospun scaffolds on keratocytes and corneal epithelial cells behavior. J Biomed Mater Res A 2011; DOI: 10.1002/jbm.a.33301.
- 40 Jones RR, Hamley IW, Connon CJ. Ex vivo expansion of limbal stem cells is affected by substrate properties. Stem Cell Res 2012; 8: 403-409
- 41 Lawrence BD, Cronin-Golomb M, Georgakoudi I et al. Bioactive silk protein biomaterial systems for optical devices. Biomacromolecules 2008; 9: 1214-1220
- 42 Bray LJ, George KA, Ainscough SL et al. Human corneal epithelial equivalents constructed on Bombyx mori silk fibroin membranes. Biomaterials 2011; 32: 5086-5091
- 43 Bray LJ, George KA, Hutmacher DW et al. A dual-layer silk fibroin scaffold for reconstructing the human corneal limbus. Biomaterials 2012; 33: 3529-3538
- 44 Priya CG, Arpitha P, Vaishali S et al. Adult human buccal epithelial stem cells: identification, ex-vivo expansion, and transplantation for corneal surface reconstruction. Eye (Lond) 2011; 25: 1641-1649
- 45 Inatomi T, Nakamura T, Koizumi N et al. Midterm results on ocular surface reconstruction using cultivated autologous oral mucosal epithelial transplantation. Am J Ophthalmol 2006; 141: 267-275
- 46 Nakamura T, Takeda K, Inatomi T et al. Long-term results of autologous cultivated oral mucosal epithelial transplantation in the scar phase of severe ocular surface disorders. Br J Ophthalmol 2011; 95: 942-946
- 47 Ang LP, Tanioka H, Kawasaki S et al. Cultivated human conjunctival epithelial transplantation for total limbal stem cell deficiency. Invest Ophthalmol Vis Sci 2010; 51: 758-764
- 48 Meyer-Blazejewska EA, Call MK, Yamanaka O et al. From hair to cornea: toward the therapeutic use of hair follicle-derived stem cells in the treatment of limbal stem cell deficiency. Stem Cells 2011; 29: 57-66
- 49 Homma R, Yoshikawa H, Takeno M et al. Induction of epithelial progenitors in vitro from mouse embryonic stem cells and application for reconstruction of damaged cornea in mice. Invest Ophthalmol Vis Sci 2004; 45: 4320-4326
- 50 Ma Y, Xu Y, Xiao Z et al. Reconstruction of chemically burned rat corneal surface by bone marrow-derived human mesenchymal stem cells. Stem Cells 2006; 24: 315-321
- 51 Jiang TS, Cai L, Ji WY et al. Reconstruction of the corneal epithelium with induced marrow mesenchymal stem cells in rats. Mol Vis 2010; 16: 1304-1316
- 52 Gomes JA, Geraldes Monteiro B, Melo GB et al. Corneal reconstruction with tissue-engineered cell sheets composed of human immature dental pulp stem cells. Invest Ophthalmol Vis Sci 2010; 51: 1408-1414
- 53 Daya SM, Watson A, Sharpe JR et al. Outcomes and DNA analysis of ex vivo expanded stem cell allograft for ocular surface reconstruction. Ophthalmology 2005; 112: 470-477
- 54 Ho JH, Ma WH, Tseng TC et al. Isolation and characterization of multi-potent stem cells from human orbital fat tissues. Tissue Eng Part A 2011; 17: 255-266
- 55 Huang M, Li N, Wu Z et al. Using acellular porcine limbal stroma for rabbit limbal stem cell microenvironment reconstruction. Biomaterials 2011; 32: 7812-7821
- 56 Barbaro V, Ferrari S, Fasolo A et al. Reconstruction of a human hemicornea through natural scaffolds compatible with the growth of corneal epithelial stem cells and stromal keratocytes. Mol Vis 2009; 15: 2084-2093