Semin Neurol 2012; 32(01): 009-014
DOI: 10.1055/s-0032-1306381
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Biogenesis and Significance of Central Nervous System Myelin

M. Mateo Paz Soldán
1   Department of Neurology, Mayo Clinic, Rochester, Minnesota
,
Istvan Pirko
1   Department of Neurology, Mayo Clinic, Rochester, Minnesota
› Author Affiliations
Further Information

Publication History

Publication Date:
15 March 2012 (online)

Abstract

The central nervous system is composed of neurons and glia cells. Although neurons have long been considered the functionally important cells, an ever-expanding body of research has revealed many critical functions of neuroglia. Among these, the myelin sheath elaborated by oligodendrocytes acts as a dynamic partner to the axons it enwraps and can no longer be considered as an inert membrane. In addition to its best known roles of providing insulation and optimizing conduction velocity, myelination modulates the maturation, survival, and regenerative capacity of axons through trophic support and signaling molecules. Myelin is produced through a complex process involving cell differentiation, biosynthesis of specialized lipids and proteins, interaction with environmental signals, and coordinated changes in cell morphology. Understanding the pathophysiology of primary myelin disorders, and the challenges faced in treating them, is facilitated through understanding of the structure, function, and generation/regeneration of myelin.

 
  • References

  • 1 Pfeiffer SE, Warrington AE, Bansal R. The oligodendrocyte and its many cellular processes. Trends Cell Biol 1993; 3 (6) 191-197
  • 2 Chrast R, Saher G, Nave KA, Verheijen MH. Lipid metabolism in myelinating glial cells: lessons from human inherited disorders and mouse models. J Lipid Res 2011; 52 (3) 419-434
  • 3 Krämer EM, Schardt A, Nave KA. Membrane traffic in myelinating oligodendrocytes. Microsc Res Tech 2001; 52 (6) 656-671
  • 4 Klunder B, Baron W, Schrage C, de Jonge J, de Vries H, Hoekstra D. Sorting signals and regulation of cognate basolateral trafficking in myelin biogenesis. J Neurosci Res 2008; 86 (5) 1007-1016
  • 5 Jackman N, Ishii A, Bansal R. Oligodendrocyte development and myelin biogenesis: parsing out the roles of glycosphingolipids. Physiology (Bethesda) 2009; 24: 290-297
  • 6 Maier O, Hoekstra D, Baron W. Polarity development in oligodendrocytes: sorting and trafficking of myelin components. J Mol Neurosci 2008; 35 (1) 35-53
  • 7 Kolter T, Proia RL, Sandhoff K. Combinatorial ganglioside biosynthesis. J Biol Chem 2002; 277 (29) 25859-25862
  • 8 Brown MC, Besio Moreno M, Bongarzone ER, Cohen PD, Soto EF, Pasquini JM. Vesicular transport of myelin proteolipid and cerebroside sulfates to the myelin membrane. J Neurosci Res 1993; 35 (4) 402-408
  • 9 Hannun YA, Obeid LM. The ceramide-centric universe of lipid-mediated cell regulation: stress encounters of the lipid kind. J Biol Chem 2002; 277 (29) 25847-25850
  • 10 Ichikawa S, Hirabayashi Y. Glucosylceramide synthase and glycosphingolipid synthesis. Trends Cell Biol 1998; 8 (5) 198-202
  • 11 Lannert H, Gorgas K, Meissner I, Wieland FT, Jeckel D. Functional organization of the Golgi apparatus in glycosphingolipid biosynthesis. Lactosylceramide and subsequent glycosphingolipids are formed in the lumen of the late Golgi. J Biol Chem 1998; 273 (5) 2939-2946
  • 12 Farrer RG, Benjamins JA. Entry of newly synthesized gangliosides into myelin. J Neurochem 1992; 58 (4) 1477-1484
  • 13 Jurevics H, Morell P. Cholesterol for synthesis of myelin is made locally, not imported into brain. J Neurochem 1995; 64 (2) 895-901
  • 14 Saher G, Brügger B, Lappe-Siefke C , et al. High cholesterol level is essential for myelin membrane growth. Nat Neurosci 2005; 8 (4) 468-475
  • 15 Maxfield FR, Wüstner D. Intracellular cholesterol transport. J Clin Invest 2002; 110 (7) 891-898
  • 16 Werner HB, Kuhlmann K, Shen S , et al. Proteolipid protein is required for transport of sirtuin 2 into CNS myelin. J Neurosci 2007; 27 (29) 7717-7730
  • 17 Zeller NK, Hunkeler MJ, Campagnoni AT, Sprague J, Lazzarini RA. Characterization of mouse myelin basic protein messenger RNAs with a myelin basic protein cDNA clone. Proc Natl Acad Sci U S A 1984; 81 (1) 18-22
  • 18 Privat A, Jacque C, Bourre JM, Dupouey P, Baumann N. Absence of the major dense line in myelin of the mutant mouse “shiverer.”. Neurosci Lett 1979; 12 (1) 107-112
  • 19 Griffiths I, Klugmann M, Anderson T , et al. Axonal swellings and degeneration in mice lacking the major proteolipid of myelin. Science 1998; 280 (5369) 1610-1613
  • 20 Rios JC, Melendez-Vasquez CV, Einheber S , et al. Contactin-associated protein (Caspr) and contactin form a complex that is targeted to the paranodal junctions during myelination. J Neurosci 2000; 20 (22) 8354-8364
  • 21 Pedraza L, Huang JK, Colman D. Disposition of axonal caspr with respect to glial cell membranes: implications for the process of myelination. J Neurosci Res 2009; 87 (15) 3480-3491
  • 22 Kamasawa N, Sik A, Morita M , et al. Connexin-47 and connexin-32 in gap junctions of oligodendrocyte somata, myelin sheaths, paranodal loops and Schmidt-Lanterman incisures: implications for ionic homeostasis and potassium siphoning. Neuroscience 2005; 136 (1) 65-86
  • 23 Davis JQ, Lambert S, Bennett V. Molecular composition of the node of Ranvier: identification of ankyrin-binding cell adhesion molecules neurofascin (mucin + /third FNIII domain-) and NrCAM at nodal axon segments. J Cell Biol 1996; 135 (5) 1355-1367
  • 24 Kordeli E, Lambert S, Bennett V. AnkyrinG. A new ankyrin gene with neural-specific isoforms localized at the axonal initial segment and node of Ranvier. J Biol Chem 1995; 270 (5) 2352-2359
  • 25 Poliak S, Gollan L, Martinez R , et al. Caspr2, a new member of the neurexin superfamily, is localized at the juxtaparanodes of myelinated axons and associates with K+ channels. Neuron 1999; 24 (4) 1037-1047
  • 26 Arquint M, Roder J, Chia LS , et al. Molecular cloning and primary structure of myelin-associated glycoprotein. Proc Natl Acad Sci U S A 1987; 84 (2) 600-604
  • 27 Trapp BD, Andrews SB, Cootauco C, Quarles R. The myelin-associated glycoprotein is enriched in multivesicular bodies and periaxonal membranes of actively myelinating oligodendrocytes. J Cell Biol 1989; 109 (5) 2417-2426
  • 28 Park J, Liu B, Chen T , et al. Disruption of nectin-like 1 cell adhesion molecule leads to delayed axonal myelination in the CNS. J Neurosci 2008; 28 (48) 12815-12819
  • 29 Schneider A, Länder H, Schulz G , et al. Palmitoylation is a sorting determinant for transport to the myelin membrane. J Cell Sci 2005; 118 (Pt 11) 2415-2423
  • 30 Simons M, Krämer EM, Thiele C, Stoffel W, Trotter J. Assembly of myelin by association of proteolipid protein with cholesterol- and galactosylceramide-rich membrane domains. J Cell Biol 2000; 151 (1) 143-154
  • 31 Larocque D, Pilotte J, Chen T , et al. Nuclear retention of MBP mRNAs in the quaking viable mice. Neuron 2002; 36 (5) 815-829
  • 32 Barbarese E, Koppel DE, Deutscher MP , et al. Protein translation components are colocalized in granules in oligodendrocytes. J Cell Sci 1995; 108 (Pt 8) 2781-2790
  • 33 Carson JH, Worboys K, Ainger K, Barbarese E. Translocation of myelin basic protein mRNA in oligodendrocytes requires microtubules and kinesin. Cell Motil Cytoskeleton 1997; 38 (4) 318-328
  • 34 de Vries H, de Jonge JC, Schrage C, van der Haar ME, Hoekstra D. Differential and cell development-dependent localization of myelin mRNAs in oligodendrocytes. J Neurosci Res 1997; 47 (5) 479-488
  • 35 Windebank AJ, Wood P, Bunge RP, Dyck PJ. Myelination determines the caliber of dorsal root ganglion neurons in culture. J Neurosci 1985; 5 (6) 1563-1569
  • 36 Sánchez I, Hassinger L, Paskevich PA, Shine HD, Nixon RA. Oligodendroglia regulate the regional expansion of axon caliber and local accumulation of neurofilaments during development independently of myelin formation. J Neurosci 1996; 16 (16) 5095-5105
  • 37 Morelli A, Ravera S, Panfoli I. Hypothesis of an energetic function for myelin. Cell Biochem Biophys 2011; 61 (1) 179-187
  • 38 Craveiro LM, Hakkoum D, Weinmann O, Montani L, Stoppini L, Schwab ME. Neutralization of the membrane protein Nogo-A enhances growth and reactive sprouting in established organotypic hippocampal slice cultures. Eur J Neurosci 2008; 28 (9) 1808-1824
  • 39 Aloy EM, Weinmann O, Pot C , et al. Synaptic destabilization by neuronal Nogo-A. Brain Cell Biol 2006; 35 (2-3) 137-156
  • 40 Li Q, Qi B, Oka K , et al. Link of a new type of apoptosis-inducing gene ASY/Nogo-B to human cancer. Oncogene 2001; 20 (30) 3929-3936
  • 41 Chen Y, Tang X, Cao X, Chen H, Zhang X. Human Nogo-C overexpression induces HEK293 cell apoptosis via a mechanism that involves JNK-c-Jun pathway. Biochem Biophys Res Commun 2006; 348 (3) 923-928
  • 42 Nave KA, Trapp BD. Axon-glial signaling and the glial support of axon function. Annu Rev Neurosci 2008; 31: 535-561
  • 43 Baron W, Decker L, Colognato H, ffrench-Constant C. Regulation of integrin growth factor interactions in oligodendrocytes by lipid raft microdomains. Curr Biol 2003; 13 (2) 151-155
  • 44 Bryant MR, Marta CB, Kim FS, Bansal R. Phosphorylation and lipid raft association of fibroblast growth factor receptor-2 in oligodendrocytes. Glia 2009; 57 (9) 935-946
  • 45 Krämer EM, Klein C, Koch T, Boytinck M, Trotter J. Compartmentation of Fyn kinase with glycosylphosphatidylinositol-anchored molecules in oligodendrocytes facilitates kinase activation during myelination. J Biol Chem 1999; 274 (41) 29042-29049
  • 46 Hagmann P, Sporns O, Madan N , et al. White matter maturation reshapes structural connectivity in the late developing human brain. Proc Natl Acad Sci U S A 2010; 107 (44) 19067-19072
  • 47 Takahashi N, Sakurai T, Davis KL, Buxbaum JD. Linking oligodendrocyte and myelin dysfunction to neurocircuitry abnormalities in schizophrenia. Prog Neurobiol 2011; 93 (1) 13-24
  • 48 Saher G, Simons M. Cholesterol and myelin biogenesis. Subcell Biochem 2010; 51: 489-508
  • 49 Fanarraga ML, Griffiths IR, Zhao M, Duncan ID. Oligodendrocytes are not inherently programmed to myelinate a specific size of axon. J Comp Neurol 1998; 399 (1) 94-100