Fortschr Neurol Psychiatr 2012; 80(6): 327-335
DOI: 10.1055/s-0031-1299105
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Innovationen im Neuromonitoring mit Ultraschall[*]

Innovations in Neuro-Monitoring using Transcranial Ultrasound
A. Harloff
,
W. D. Niesen
,
M. Reinhard
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
29. Mai 2012 (online)

Zusammenfassung

Schwerpunkt dieses Übersichtsartikels sind Ultraschall-Verfahren, die ein Neuromonitoring durch Erfassung der Morphologie von Hirnstrukturen und zerebralem Blutfluss im Verlauf ermöglichen. Einige Techniken sind momentan Randgebiete der Ultraschalldiagnostik. Ihr großer Vorteil ist die Nichtinvasivität und die Untersuchung am Patientenbett. Dadurch können Zeit, Kosten und Nebenwirkungen durch Vermeidung von Transporten akut kranker Patienten zum CT oder MRT gespart werden. Eine Abschätzung des Hirndrucks gelingt so z. B. durch die mehrzeitige Bestimmung des Pulsatilitätsindex, des zerebralen venösen Blutflusses, die Mittellinienverlagerung und die transorbitale Sonografie der Optikusscheiden. Der transkranielle Ultraschall kann ferner zur Darstellung zerebraler Blutungen und zur Unterstützung bei neurochirurgischen Eingriffen dienen. Zuletzt berichten wir über den Nutzen der Bestimmung der zerebralen Autoregulation und den aktuellen Stand zur Sonothrombolyse bei Arterienverschlüssen.

Abstract

This review describes transcranial ultrasound-based neuromonitoring by assessing changes of brain structures or cerebral blood flow over time. Some of the presented ultrasound techniques are still experimental. They are advantageous as they provide non-invasive and bed-side imaging. Thus, time, costs and potentially hazardous side effects due to transportation of acutely ill patients to CT or MRI scanners can be avoided. An assessment of increased cerebral pressure can be achieved by repeated determination of individual pulsatility index, cerebral venous blood flow, midline shift and transorbital optic sheath measurements. Moreover, transcranial duplex sonography offers the possibility to detect intracranial haemorrhage and to guide neurosurgical interventions. Finally, the value of measuring cerebral autoregulation and the current state of the art regarding sonothrombolysis in acute intracranial arterial thrombosis is presented.

* Erstveröffentlichung in Klin Neurophysiol 2011; 42: e1–e12.


 
  • Literatur

  • 1 Gosling RG, King DH. Arterial assessment by Doppler-shift ultrasound. Proc R Soc Med 1974; 67: 447-449
  • 2 Figaji AA, Zwane E, Fieggen AG et al. Transcranial Doppler pulsatility index is not a reliable indicator of intracranial pressure in children with severe traumatic brain injury. Surg Neurol 2009; 72: 389-394
  • 3 Behrens A, Lenfeldt N, Ambarki K et al. Transcranial Doppler pulsatility index: not an accurate method to assess intracranial pressure. Neurosurgery 2010; 66: 1050-1057
  • 4 Ducrocq X, Hassler W, Moritake K et al. Consensus opinion on diagnosis of cerebral circulatory arrest using Doppler-sonography: Task Force Group on cerebral death of the Neurosonology Research Group of the World Federation of Neurology. J Neurol Sci 1998; 159: 145-150
  • 5 Reinhard M, Petrick M, Steinfurth G et al. Acute increase in intracranial pressure revealed by transcranial Doppler sonography. J Clin Ultrasound 2003; 31: 324-327
  • 6 Widder B, Görtler M. Doppler- und Duplexsonographie der hirnversorgenden Arterien. 6. Aufl. Heidelberg: Springer; 2006
  • 7 Schmidt B, Czosnyka M, Raabe A et al. Adaptive noninvasive assessment of intracranial pressure and cerebral autoregulation. Stroke 2003; 34: 84-89
  • 8 Schmidt B, Weinhold M, Czosnyka M et al. Accuracy of non-invasive ICP assessment can be increased by an initial individual calibration. Acta Neurochir Suppl 2008; 102: 49-52
  • 9 Schaller B, Graf R. Different compartments of intracranial pressure and its relationship to cerebral blood flow. J Trauma 2005; 59: 1521-1531
  • 10 Niesen WD, Rosenkranz M, Schummer W et al. Cerebral venous flow velocity predicts poor outcome in subarachnoid hemorrhage. Stroke 2004; 35: 1873-1878
  • 11 Schoser BG, Riemenschneider N, Hansen HC. The impact of raised intracranial pressure on cerebral venous hemodynamics: a prospective venous transcranial Doppler ultrasonography study. J Neurosurg 1999; 91: 744-749
  • 12 Mursch K, Müller CA, Buhre W et al. Blood flow velocities in the basal cerebral vein after head trauma: a prospective study in 82 patients. J Neuroimaging 2002; 12: 325-329
  • 13 Stolz E, Gerriets T, Babacan SS et al. Intracranial venous hemodynamics in patients with midline dislocation due to postischemic brain edema. Stroke 2002; 33: 479-485
  • 14 Rohr A, Riedel C, Reimann G et al. Pseudotumor cerebri: quantitative in-vivo measurements of markers of intracranial hypertension. Fortschr Röntgenstr 2008; 180: 884-890
  • 15 Lagrèze WA, Lazzaro A, Weigel M et al. Morphometry of the retrobulbar human optic nerve: comparison between conventional sonography and ultrafast magnetic resonance sequences. Invest Ophthalmol Vis Sci 2007; 48: 1913-1917
  • 16 Bäuerle J, Lochner P, Kaps M et al. Intra- and Interobsever Reliability of Sonographic Assessment of the Optic Nerve Sheath Diameter in Healthy Adults. J Neuroimaging 2010 DOI: 10.1111/j.1552-6569.2010.00546.x.
  • 17 Soldatos T, Chatzimichail K, Papathanasiou M et al. Optic nerve sonography: a new window for the non-invasive evaluation of intracranial pressure in brain injury. Emerg Med J 2009; 26: 630-634
  • 18 Hansen HC, Helmke K. Validation of the optic nerve sheath response to changing cerebrospinal fluid pressure: ultrasound findings during intrathecal infusion tests. J Neurosurg 1997; 87: 34-40
  • 19 Hansen HC, Lagrèze W, Krueger O et al. Dependence of the optic nerve sheath diameter on acutely applied subarachnoidal pressure – an experimental ultrasound study. Acta Ophthalmol 2011; 89: e528-e532
  • 20 Bäuerle J, Nedelmann M. Sonographic assessment of the optic nerve sheath in idiopathic intracranial hypertension. J Neurol 2011; 258: 2014-2019
  • 21 Gerriets T, Stolz E, Modrau B et al. Sonographic monitoring of midline shift in hemispheric infarctions. Neurology 1999; 1: 45-49
  • 22 Gerriets T, Stolz E, König S et al. Sonographic monitoring of midline shift in space-occupying stroke: an early outcome predictor. Stroke 2001; 32: 442-447
  • 23 Stolz E, Gerriets T, Fiss I et al. Comparison of transcranial color-coded duplex sonography and cranial CT measurements for determining third ventricle midline shift in space-occupying stroke. Am J Neuroradiol 1999; 20: 1567-1571
  • 24 Bertram M, Khoja W, Ringleb P et al. Transcranial colour-coded sonography for the bedside evaluation of mass effect after stroke. Eur J Neurol 2000; 7: 639-646
  • 25 Mäurer M, Shambal S, Berg D et al. Differentiation between intracerebral hemorrhage and ischemic stroke by transcranial color-coded duplex-sonography. Stroke 1998; 29: 2563-2567
  • 26 Seidel G, Kaps M, Dorndorf W. Transcranial color-coded duplex sonography of intracerebral hematomas in adults. Stroke 1993; 24: 1519-1527
  • 27 Broderick JP, Brott TG, Tomsick T et al. Ultra-early evaluation of intracerebral hemorrhage. J Neurosurg 1990; 72: 195-199
  • 28 Pérez ES, Delgado-Mederos R, Rubiera M et al. Transcranial duplex sonography for monitoring hyperacute intracerebral hemorrhage. Stroke 2009; 40: 987-990
  • 29 Niesen WD, Burkhardt D, Hoeltje J et al. Transcranial grey-scale sonography of subdural haematoma in adults. Ultraschall in Med 2006; 27: 251-255
  • 30 Whitehead WE, Jea A, Vachhrajani S et al. Accurate placement of cerebrospinal fluid shunt ventricular catheters with real-time ultrasound guidance in older children without patent fontanelles. J Neurosurg 2007; 107: 406-410
  • 31 Niesen W, Grauvogel J, Deininger M et al. Sonographisch gesteuerte Katheteranlage zur minimal-invasiven Entlastung intrazerebraler Hämatome. Abtraktband der 27. Arbeitstagung der Deutschen Gesellschaft für Neurointensiv- und Notfallmedizin Bad Homburg: 2010: 49
  • 32 Kiphuth IC, Huttner HB, Struffert T et al. Sonographic monitoring of ventricle enlargement in posthemorrhagic hydrocephalus. Neurology 2011; 76: 858-862
  • 33 Aaslid R, Lindegaard KF, Sorteberg W et al. Cerebral autoregulation dynamics in humans. Stroke 1989; 20: 45-52
  • 34 Czosnyka M, Brady K, Reinhard M et al. Monitoring of cerebrovascular autoregulation: facts, myths, and missing links. Neurocrit Care 2009; 10: 373-386
  • 35 Reinhard M, Neunhoeffer F, Gerds TA et al. Secondary decline of cerebral autoregulation is associated with worse outcome after intracerebral hemorrhage. Intensive Care Med 2010; 36: 264-271
  • 36 Reinhard M, Rutsch S, Lambeck J et al. Dynamic cerebral autoregulation associates with infarct size and outcome after ischemic stroke. Acta Neurol Scand 2011; DOI: 10.1111/j.1600-0404.2011.01515.x.
  • 37 Reinhard M, Gerds TA, Grabiak D et al. Cerebral dysautoregulation and the risk of ischemic events in occlusive carotid artery disease. J Neurol 2008; 255: 1182-1189
  • 38 Daffertshofer M, Huang Z, Fatar M et al. Efficacy of sonothrombolysis in a rat model of embolic ischemic stroke. Neurosci Lett 2004; 361: 115-119
  • 39 Alexandrov AV, Molina CA, Grotta JC et al. CLOTBUST Investigators. Ultrasound-enhanced systemic thrombolysis for acute ischemic stroke. N Engl J Med 2004; 351: 2170-2178
  • 40 Tsivgoulis G, Eggers J, Ribo M et al. Safety and efficacy of ultrasound-enhanced thrombolysis: a comprehensive review and meta-analysis of randomized and nonrandomized studies. Stroke 2010; 41: 280-287