Synthesis 2012; 44(11): 1745-1754
DOI: 10.1055/s-0031-1290824
paper
© Georg Thieme Verlag Stuttgart · New York

O-Alkyl-N-acyl-N-phenylhydroxylamines as Photochemical Alkoxy Radical Precursors

Nilanjana Chowdhury
Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India, Fax: +91(3222)282252   Email: ndpradeep@chem.iitkgp.ernet.in
,
Anakuthil Anoop*
Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India, Fax: +91(3222)282252   Email: ndpradeep@chem.iitkgp.ernet.in
,
N. D. Pradeep Singh*
Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India, Fax: +91(3222)282252   Email: ndpradeep@chem.iitkgp.ernet.in
› Author Affiliations
Further Information

Publication History

Received: 21 December 2011

Accepted after revision: 09 March 2012

Publication Date:
10 May 2012 (online)


Dedicated to Professor Eluvathongal D. Jemmis on the occasion of his 60th birthday

Abstract

A simple and efficient technique for the photolysis of alkoxy radical precursors is developed. Irradiation of O-alkyl-N-acyl-N-phenylhydroxylamines, as representative alkoxy radical precursors, with ultraviolet light (≥254 nm) results in homolytic N–O bond cleavage to generate singlet alkoxy and acylaminyl caged radical pairs. These radicals, depending on the solvent employed, either escape from the cage to form fragmentation products, or undergo in-cage reactions to produce photorearrangement products. The homolytic cleavage of the N–O bond is analyzed using time-dependent­ density functional theory calculations. The nature of the N-acyl substituent on the O-alkyl-N-acyl-N-phenylhydroxylamines is shown to influence their ability to generate radicals. Furthermore, identification and trapping of the alkoxy radicals is demonstrated.

Supporting Information

 
  • References

    • 1a Hartung J, Gallou F. J. Org. Chem. 1995; 60: 6706
    • 1b Hartung J, Kneuer R. Eur. J. Org. Chem. 2000; 1677
    • 1c Gonzalez CC, Kennedy AR, Leon EI, Riesco-Fagundo C, Suarez E. Chem. Eur. J. 2003; 23: 5800
    • 1d Zhu H, Wickenden JG, Campbell NE, Leung JC. T, Johnson KM, Sammis GM. Org. Lett. 2009; 11: 2019
    • 1e Sperry J, Liu YC, Brimble MA. Org. Biomol. Chem. 2010; 8: 29
    • 2a Lal D, Griller D, Husband S, Ingold KU. J. Am. Chem. Soc. 1974; 96: 6355
    • 2b Beckwith AL. J, Hay BP. J. Am. Chem. Soc. 1988; 110: 4415
    • 2c Esker JL, Newcomb M. Adv. Heterocycl. Chem. 1993; 58: 1
    • 2d Atkinson R. Atmos. Environ. 2007; 41: 8468
    • 2e Davis AC, Francisco JS. J. Am. Chem. Soc. 2011; 133: 18208
    • 3a Theodorakis EA, Wilcoxen KM. Chem. Commun. 1996; 1927
    • 3b Theodorakis EA, Xiang X, Blom P. Chem. Commun. 1997; 1463
    • 3c Adam W, Grimm GN, Marquardt S, Saha-Moller CR. J. Am. Chem. Soc. 1999; 121: 1179
    • 3d Mooler M, Adam W, Marquardt S, Saha-Moller CR, Stopper H. Free Radical Biol. Med. 2005; 39: 473
    • 4a Dowd P, Zhang W. Chem. Rev. 1993; 93: 2091
    • 4b Suarez E, Rodriguez MS In Radicals in Organic Synthesis . Vol. 2. Renaud P, Sibi MP. Wiley-VCH; Toronto: 2001. Chap. 5.3, 440
    • 4c Alonso-Cruz CR, Kennedy AR, Rodriguez MS, Suarez E. Org. Lett. 2003; 5: 3729
    • 4d Francisco CG, Gonzalez CC, Kennedy AR, Paz NR, Suarez E. Tetrahedron: Asymmetry 2004; 15: 11
    • 5a Kalvoda J, Heusler K. Synthesis 1971; 501
    • 5b Majetich G, Wheless K. Tetrahedron 1995; 51: 7095
    • 5c Feray L, Kuznetsov H, Renaud P In Radicals in Organic Synthesis . Vol. 2. Renaud P, Sibi MP. Wiley-VCH; Toronto: 2001. Chap. 3.6, 246
    • 5d Cekovic Z. Tetrahedron 2003; 59: 8073
    • 5e Cekovik Z. J. Serb. Chem. Soc. 2005; 70: 287
    • 6a Hartung J In Radicals in Organic Synthesis . Vol. 2. Renaud P, Sibi MP. Wiley-VCH; Toronto: 2001. Chap. 5.2, 427
    • 6b Hartung J, Kneuer R, Laug S, Schmidt P, Spehar K, Svoboda I, Fuess H. Eur. J. Org. Chem. 2003; 4033
    • 6c Hurtung J, Daniel K, Gottwald T, Grob A, Schneiders N. Org. Biomol. Chem. 2006; 4: 2313
    • 6d Becerril MR, Leung JC. T, Dunbar CR, Sammis GM. J. Org. Chem. 2011; 76: 7720
    • 7a Barton DH. R, Beaton JM, Geller LE, Pechet MM. J. Am. Chem. Soc. 1960; 82: 2640
    • 7b Barton DH. R, Beaton JM, Geller LE, Pechet MM. J. Am. Chem. Soc. 1961; 83: 4076
  • 8 Vite GD, Fraser-Reid B. Synth. Commun. 1988; 18: 1339
  • 9 Walling C, Clark RT. J. Am. Chem. Soc. 1974; 96: 4530
  • 10 Beckwith AL. J, Hay BP, Williams GM. J. Chem. Soc., Chem. Commun. 1989; 1202
    • 11a Pasto DJ, L’Hermine G. J. Org. Chem. 1990; 55: 5815
    • 11b Pasto DJ, Cottard F. Tetrahedron Lett. 1994; 35: 4303
  • 12 Kim S, Lee TA. Synlett 1997; 950
  • 13 Kim S, Lee TA, Song Y. Synlett 1998; 471
    • 14a Kim E, Cho CH, Kim S. Bull. Korean Chem. Soc. 2005; 26: 1869
    • 14b Zlotorzynska M, Sammis GM. Org. Lett. 2011; 13: 6264
    • 15a Sakurai T, Yamamoto H, Yamada S, Inoue H. Bull. Chem. Soc. Jpn. 1985; 58: 1174
    • 15b Lipczynska-Kochany E. Chem. Rev. 1991; 91: 477
  • 16 Sakurai T, Sukegawa H, Inoue H. Bull. Chem. Soc. Jpn. 1985; 58: 2875
  • 17 Keneko T, Kubo K, Sakurai T. Tetrahedron Lett. 1997; 38: 4779
  • 18 Chowdhury N, Dutta S, Boda N, Dasgupta S, Singh ND. P. Bioorg. Med. Chem. Lett. 2010; 20: 5414
  • 19 Lobo AM, Merqus MM, Prabhakar S, Rzep HS. J. Org. Chem. 1987; 52: 2925
  • 20 Miyabe H, Yoshida K, Yamauchi M, Takemoto Y. J. Org. Chem. 2005; 70: 2148
  • 21 Johnson RE, Soria AE. J. Med. Chem. 1981; 24: 1314
  • 22 Sutcliffe R, Anpo M, Stolow A, Ingold KU. J. Am. Chem. Soc. 1982; 104: 6064
  • 23 Malval JP, Suzuki S, Morlet-Savary F, Allonas X, Fouassier JP, Takahara S, Yamaoka T. J. Phys. Chem. A 2008; 112: 3879
  • 24 Rosenberg M, Sølling TI. Chem. Phys. Lett. 2010; 484: 113
    • 25a Wagner PJ, Kemppainen AE. J. Am. Chem. Soc. 1972; 94: 7495
    • 25b Ikbal M, Jana A, Singh ND. P, Banerjee R, Dhara D. Tetrahedron 2011; 67: 3733
    • 26a Cumaioni DM, Walter HF, Pratt DW. J. Am. Chem. Soc. 1973; 95: 4057
    • 26b Danen WC, Neugebauer FA. Angew. Chem. Int. Ed. 1975; 14: 783
  • 27 Zhang G, Cui L, Wang Y, Zhang L. J. Am. Chem. Soc. 2010; 132: 1474
  • 28 Hurtung J, Schur C, Kempter I, Gottwald T. Tetrahedron 2010; 66: 1365
  • 29 Duffy MG, Grayson DH. J. Chem. Soc., Perkin Trans. 1 2002; 1555
    • 30a Becke AD. Phys. Rev. A 1988; 38: 3098
    • 30b Perdew JP. Phys. Rev. B 1986; 33: 8822
    • 31a Lee C, Yang W, Parr RG. Phys. Rev. B 1988; 37: 785
    • 31b Becke AD. J. Chem. Phys. 1993; 98: 5648
  • 32 Grimme S, Antony J, Schwabe T, Mück-Lichtenfeld C. Org. Biomol. Chem. 2007; 5: 741
    • 33a Eichkorn K, Treutler O, Ohm H, Haser M, Ahlrichs R. Chem. Phys. Lett. 1995; 240: 283
    • 33b Eichkorn K, Treutler O, Ohm H, Haser M, Ahlrichs R. Chem Phys. Lett. 1995; 242: 652
  • 34 TURBOMOLE V6.2 2011, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007, available from http://www.turbomole.com
  • 35 Kastner J, Carr JM, Keal TW, Thiel W, Wander A, Sherwood P. J. Phys. Chem. A 2009; 113: 11856
  • 36 ChemShell, a Computational Chemistry Shell, see www.chemshell.org
  • 37 Henkelman G, Jónnson H. J. Chem. Phys. 1999; 111: 7010