Synlett 2012(5): 755-759  
DOI: 10.1055/s-0031-1290596
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

An Easy Stereoselective Copper(I)-Catalyzed Synthesis of (E)-3-Trifluoromethylbut-2-en-3-ynoate via Palladium-Free Stille Coupling Reaction

Khalid Zine, Julien Petrignet, Jérôme Thibonnet, Mohamed Abarbri*
Laboratoire de Physicochimie des Matériaux et Biomolécules, EA 4244, Université François Rabelais, Faculté des Sciences, Parc de Grandmont, 37200 Tours, France
Fax: +33(2)47367073; e-Mail: mohamed.abarbri@univ-tours.fr;
Further Information

Publication History

Received 7 December 2011
Publication Date:
28 February 2012 (online)

Abstract

A general and efficient Cu(I)-catalyzed cross-coupling reaction of alkynyl bromides and β-tributylstannyl-α,β-unsaturated ester bearing a trifluoromethyl group in β-position was developed under very mild conditions. This method provides easy access to a variety of 2,3-enynoate bearing a trifluoromethyl group from good to excellent yields with excellent stereoselectivity. This procedure does not require the use of any expensive supplementary additives and is palladium-free.

    References and Notes

  • 1a Filler R. Kobayashi Y. Biomedicinal Aspects of Fluorine Chemistry   Kodansha; Tokyo: 1982. 
  • 1b Hudlicky M. Chemistry of Organo Fluorine Compounds   Ellis Horwood; New York: 1976. 
  • 2a Smart BE. Chem. Rev.  1996,  96:  1555 
  • 2b Resnati G. Soloshonok VA. Tetrahedron  1996,  52:  1 
  • 2c Organofluorine Chemistry: Principle and Commercial Applications   Banks RE. Smart BE. Tatlow JC. Plenum Press; New York: 1994. 
  • 3a Prakesh M. Grée D. Chandrasekhar S. Grée R. Eur. J. Org. Chem.  2005,  1221 
  • 3b Mikami K. Itoh Y. Yamanaka M. Chem. Rev.  2004,  104:  1 
  • 4a Burton DJ. Organofluorine Chemistry: Techniques and Synthons   Chambers RD. Springer; Berlin/Heidelberg: 1997. 
  • 4b Steenis JH. Gen A. J. Chem. Soc., Perkin Trans. 1  2002,  2117 
  • 4c Prakash GKS. Yudin AK. Chem. Rev.  1997,  97:  757 
  • 4d Ojima I. Chem. Rev.  1988,  88:  1011 
  • 5a Uneyama K. Noritake C. Sadamune K. J. Org. Chem.  1996,  61:  6055 
  • 5b Watanabe H. Yan F. Sakai T. Uneyama K. J. Org. Chem.  1994,  59:  758 
  • 5c Watanabe H. Yamashita F. Uneyama K. Tetrahedron Lett.  1993,  34:  1941 
  • 5d Morken PA. Lu H. Nakamura A. Burton DJ. Tetrahedron Lett.  1991,  32:  4271 
  • 6 Kobayashi T. Nakagawa T. Amii H. Uneyama K. Org. Lett.  2003,  5:  4297 
  • 7a Davis CR. Burton DJ. Organozinc Reagents   Knochel P. Jones P. Oxford University Press; Oxford: 1999.  p.57-76  
  • 7b Shi G.-Q. Huang X.-H. Hong F. J. Org. Chem.  1996,  61:  3200 
  • 7c Morken PA. Burton DJ. J. Org. Chem.  1993,  58:  1167 ; and references cited therein
  • 8a Banks RE. Haszeldine RN. Taylor DR. Webb G. Tetrahedron Lett.  1970,  11:  5215 
  • 8b Miller W. Snider RH. Hummel RJ. J. Am. Chem. Soc.  1969,  91:  6532 
  • 9a Fuchikami T. Yamanouchi A. Ojima I. Synthesis  1984,  766 
  • 9b Fuchikami T. Yamanouchi A. Chem. Lett.  1984,  1595 
  • 10a Wang Y. Burton DJ. Org. Lett.  2006,  8:  1109 
  • 10b Wang Y. Lu L. Burton DJ. J. Org. Chem.  2005,  70:  10743 
  • 10c Chae JH. Konno T. Kanda M. Ishihara T. Yamanaka T. J. Fluorine Chem.  2003,  120:  185 
  • 10d Jeong IH. Park YS. Kim MS. Song YS. J. Fluorine Chem.  2003,  120:  195 
  • 11a Beaudet I. Parrain J.-L. Quintard JP. Tetrahedron Lett.  1992,  33:  3647 
  • 11b Abele E. Rubina K. Fleisher M. Popelis J. Arsenyan P. Lukevics E. Appl. Organomet. Chem.  2002,  16:  141 
  • 11c Han SY. Choi JH. Hwang JH. Jeong IH. Bull. Korean Chem. Soc.  2010,  31:  1121 
  • 12a Kouno R. Okauchi T. Nakamura M. Ichikawa J. Minami T. J. Org. Chem.  1998,  63:  6239 
  • 12b Ikeda S. Sato Y. J. Am. Chem. Soc.  1994,  116:  5975 
  • 12c Stefani HA. Cella R. Dorr FA. Pereira CMP. Zeni G. Gomes M. Tetrahedron Lett.  2005,  46:  563 
  • 13a Magriotis PA. Kim KD. J. Am. Chem. Soc.  1993,  115:  2972 
  • 13b Miller JA. Zweifel G. J. Am. Chem. Soc.  1983,  105:  1383 
  • 13c Corey EJ. Tramontano A. J. Am. Chem. Soc.  1984,  106:  462 
  • 14a Weir JR. Patel BA. Heck RF. J. Org. Chem.  1980,  45:  4926 
  • 14b Abarbri M. Parrain J.-L. Cintrat J.-C. Duchêne A. Synthesis  1996,  82 
  • 14c Abarbri M. Thibonnet J. Parrain J.-L. Duchêne A. Tetrahedron Lett.  2002,  43:  4703 
  • 14d Negishi E.-I. Anastasia L. Chem. Rev.  2003,  103:  1979 ; and references cited therein
  • 14e Rubina M. Conley M. Gevorgyan V. J. Am. Chem. Soc.  2006,  125:  5818 
  • For the synthesis of fluorinated 1,3-enynes, see:
  • 14f Tellier F. Sauvêtre R. Normant J.-F. Tetrahedron Lett.  1986,  27:  3147 
  • 14g Zhen-Yu Y. Burton DJ. Tetrahedron Lett.  1990,  31:  1369 
  • 15a Prié G. Thibonnet J. Abarbri M. Duchêne A. Parrain J.-L. Synlett  1998,  839 
  • 15b Hamper BC. Org. Synth.  1991,  70:  246 
  • 16a Carcenac Y. Zine K. Kizirian J.-C. Thibonnet J. Duchêne A. Parrain J.-L. Abarbri M. Adv. Synth. Catal.  2010,  352:  949 
  • 16b Thibonnet J. Duchêne A. Parrain J.-L. Abarbri M. J. Org. Chem.  2004,  69:  4262 
  • 17a Kashin AN. Bumagina IG. Bumagin NA. Beletskaya IP. Reutov OA. Izv. Akad. Nauk SSSR, Ser. Khim.  1980,  479 
  • 17b Bumagin NA. Bumagina IG. Beletskaya IP. Dokl. Akad. Nauk SSSR  1983,  272:  1384 
  • 18 Stille JK. Angew. Chem., Int. Ed. Engl.  1986,  25:  1 
  • 19a Liebeskind LS. Fengl RW. J. Org. Chem.  1990,  55:  5359 
  • 19b Farina V. Kapadia S. Krishman B. Wang C. Liebeskind LS. J. Org. Chem.  1994,  59:  5905 
  • 20a Cai M. Chen G. Hao W. Synthesis  2007,  1197 
  • 20b Mee SPH. Lee V. Baldwin JE. Angew. Chem. Int. Ed.  2004,  43:  1132 
  • 20c Casado AL. Espinet P. Organometallics  2003,  22:  1305 
  • 20d Piers E. Yee JGK. Gladstone PL. Org. Lett.  2000,  2:  481 
  • 20e Piers E. McEachern EJ. Burns PA. Tetrahedron  2000,  56:  2753 
  • 20f Han X. Stolz BM. Corey EJ. J. Am. Chem. Soc.  1999,  121:  7600 
  • 20g Piers E. Yee JGK. Gladstone PL. McEachern EJ. Tetrahedron  1998,  54:  10609 
  • 20h Lu L. Burton DJ. Tetrahedron Lett.  1997,  38:  7673 
  • 20i Piers E. Romero MA. J. Am. Chem. Soc.  1996,  118:  1215 ; and references cited therein
  • 22 Gevorgyan V. Takeda A. Homma M. Sadayori N. Radhakrishnan U. Yamamoto Y. J. Am. Chem. Soc.  1999,  121:  6391 
  • 23 Burton DJ. Jairaj V. J. Fluorine Chem.  2004,  125:  673 
  • 24a Hopf H. Krause N. Tetrahedron Lett.  1985,  26:  3323 
  • 24b Wang S. Yu L. Li P. Meng L. Wang L. Synthesis  2011,  1541 ; and references cited therein
  • 25a Peng A.-Y. Ding Y.-X. J. Am. Chem. Soc.  2003,  125:  15006 
  • 25b Liang Y. Xie Y.-X. Li J.-H. Synthesis  2007,  400 
  • 26a Piers E. McEachern EJ. Romero MA. Tetrahedron Lett.  1996,  37:  117 
  • 26b Piers E. McEachern EJ. Romero MA. Gladstone PL. Can. J. Chem.  1997,  75:  694 
  • 26c Piers E. Gladstone PL. Yee JGK. McEachern EJ. Tetrahedron  1998,  54:  10609 
  • 27a Prié G. Thibonnet J. Abarbri M. Duchêne A. Parrain J.-L. Synlett  1998,  839 
  • 27b Prié G. Thibonnet J. Abarbri M. Parrain J.-L. Duchêne A. New J. Chem.  2003,  27:  432 
  • 28a Shen Y. Ruffer T. Schulz SE. Gessner T. Wittenbecher L. Sterzel H. Lang H. J. Organomet. Chem.  2005,  690:  3878 
  • 28b Pampaloni G. Peloso R. Graiff C. Tiripicchio A. Organometallics  2005,  24:  4475 
21

Typical Experimental Procedure for the Preparation of 2a-l: Synthesis of ( E )-Ethyl 3-(Trifluoromethyl)undec-2-en-4-ynoate (2a) Compound (200 mg, 0.437 mmol), 1-bromooct-1-yne (83 mg,0.437 mmol), and dry DMF (5 mL) were introduced into a dry Schlenk flask under argon. The mixture was degassed under agitation (10 min), then CuI (8 mg, 0.04 mmol) was introduced under argon flux. The mixture was brought to r.t. and left for 5 h under stirring. The reaction mixture was diluted with Et2O, washed with aq KF solution (1 M, 10 mL) and the ether layer was separated, dried over MgSO4, concentrated, and separated on a silica gel column (pentane-Et2O = 95:5) to provide 100 mg (83%) of enyne 2a as a colorless liquid. ¹H NMR (300 MHz, CDCl3): δ = 0.91 (t, J = 7.2 Hz, 3 H), 1.22-1.66 (m, 11 H), 2.48 (d, J = 7.1 Hz, 2 H), 4.26 (q, J = 7.2 Hz, 2 H), 6.54 (s, 1 H). ¹³C NMR (75 MHz, CDCl3): δ = 13.6, 14.1, 20.0, 22.4, 27.9, 28.4, 31.2, 61.1, 72.3, 106.8, 120.9 (q, J C-F = 273.4 Hz), 126.4 (q, J C-F = 34.6 Hz), 127.1 (q, J C-F = 4.4 Hz), 163.5. ¹9F NMR (282 MHz, CDCl3): δ = -67.9. IR (ATR): ν = 2955, 2926, 2856, 2219 1734, 1634 cm.