Synlett 2012(4): 577-580  
DOI: 10.1055/s-0031-1290353
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Total Synthesis of (±)-3-Hydroxy-β-ionone through a Ring-Closing Enyne Metathesis

Daisuke Kikuchi, Masahiro Yoshida, Kozo Shishido*
Graduate School of Pharmaceutical Sciences, The University of Tokushima, 1-78-1 Sho-machi, Tokushima 770-8505, Japan
Fax: +81(88)6337287; e-Mail: shishido@ph.tokushima-u.ac.jp;
Further Information

Publication History

Received 6 December 2011
Publication Date:
13 February 2012 (online)

Abstract

The total synthesis of (±)-3-hydroxy-β-ionone, a bisnor­sesquiterpene having allelopathic activity, has been accomplished employing an enyne metathesis for the construction of the C1-C8 segment and two-carbon elongation via a nitrile oxide-alkene [3+2] cycloaddition as the key steps.

    References and Notes

  • 1a Fujimori T. Kasuga R. Noguchi M. Kaneko H. Agric. Biol. Chem.  1974,  38:  891 
  • 1b Shibata S. Katsuyama A. Noguchi M. Agric. Biol. Chem.  1978,  42:  195 
  • 2a Aasen AJ. Kimland B. Enzell CR. Acta Chem. Scand.  1971,  25:  1481 
  • 2b Kimland B. Aasen AJ. Enzell CR. Acta Chem. Scand.  1972,  26:  2177 
  • 2c Aasen AJ. Kimland B. Enzell CR. Acta Chem. Scand.  1973,  27:  2107 
  • 2d Fujimori T. Kasuga R. Matsushita H. Kaneko H. Noguchi M. Agric. Biol. Chem.  1976,  40:  303 
  • 2e Behr D. Wahlberg I. Nishida T. Enzell CR. Acta Chem. Scand.  1978,  32:  391 
  • 2f D’Abrosca B. DellaGreca M. Fiorentino A. Monaco P. Oriano P. Temussi F. Phytochemistry  2004,  65:  497 
  • 2g Park JH. Lee DG. Yeon SW. Kwon HS. Ko JH. Shin DJ. Park HS. Kim YS. Bang MH. Baek NI. Arch. Pharm. Res.  2011,  34:  533 
  • 3 Kato-Noguchi H. Yamamoto M. Tamura K. Teruya T. Suenaga K. Fujii Y. Plant Growth Regul.  2010,  60:  127 
  • For a review, see:
  • 4a Kamei T. Morimoto S. Shishido K. J. Synth. Org. Chem. Jpn.  2006,  64:  1021 
  • For recent synthetic studies, see:
  • 4b Kanematsu M. Soga K. Manabe Y. Morimoto S. Yoshida M. Shishido K. Tetrahedron  2011,  67:  4758 
  • 4c Yokoe H. Mitsuhashi C. Matsuoka Y. Yoshimura T. Yoshida M. Shishido K.
    J. Am. Chem. Soc.  2011,  133:  8854 
  • 5 Kikuchi D. Yoshida M. Shishido K. Tetrahedron Lett.  2012,  53:  145 
  • For reviews, see:
  • 6a Connon SJ. Blechert S. Angew. Chem. Int. Ed.  2003,  42:  1900 
  • 6b Poulson CS. Madsen R. Synthesis  2003,  1 
  • 6c Diber ST. Giessert A. Chem. Rev.  2004,  104:  1317 
  • 6d Mori M. J. Synth. Org. Chem. Jpn.  2005,  63:  5 
  • For the syntheses of racemic 1, see:
  • 7a Loeber DE. Russell SW. Toube TP. Weedon CL. J. Chem. Soc. C  1971,  404 
  • 7b Takazawa O. Tamura H. Kogami K. Hayashi K. Bull. Chem. Soc. Jpn.  1982,  55:  1907 
  • For the syntheses of optically active 1, see:
  • 7c Mori K. Tetrahedron Lett.  1973,  28:  2635 
  • 7d Mayer H. Helv. Chim. Acta  1980,  63:  154 
  • 7e Parry AD. Neill SJ. Horgan R. Phytochemistry  1990,  29:  1033 
  • 7f Ito M.
    J. Chem. Soc., Perkin Trans. 1  1998,  2565 
  • 7g Khachik F. Chang AN. J. Org. Chem.  2009,  74:  3875 
  • 7h Khachik F. Chang AN. Synthesis  2011,  509 
  • 8 McMurry JE. Mats JR. Kees KL. Tetrahedron  1987,  43:  5489 
  • For the syntheses of five-membered hetero- and carbocyclic dienes from the precursors with a 1,1-disubstituted alkene and an acetylene with a quaternary carbon center at the propargylic position, see:
  • 9a Kitamura T. Sato Y. Mori M. Chem. Commun.  2001,  1258 
  • 9b Kitamura T. Sato Y. Mori M. Adv. Synth. Catal.  2002,  344:  678 
  • 9c Fürstner A. Ackermann L. Gabor B. Goddard R. Lehmann CW. Mynott R. Stelzer F. Thiel OR. Chem. Eur. J.  2001,  7:  3236 
  • 10 Mori M. Sakakibara N. Kinoshita A. J. Org. Chem.  1998,  63:  6082 
  • 15 Kozikowski AP. Acc. Chem. Res.  1984,  17:  410 
  • 16 Zhang Z. Curran DP. J. Chem. Soc., Perkin Trans. 1  1991,  2627 
  • 17 Curran DP. J. Am. Chem. Soc.  1982,  104:  4042 
11

Analytical Data
IR (neat): 3334, 2922, 1460, 1362, 1049, 918 cm. ¹H NMR (400 MHz, CDCl3): δ = 6.16 (ddd, J = 13.2, 7.2, 1.6 Hz, 1 H), 5.26 (dd, J = 7.2, 2.4 Hz, 1 H), 4.98 (dd, J = 13.2, 2.4 Hz, 1 H), 4.05-3.92 (m, 1 H), 2.35 (dd, J = 16.8, 5.6 Hz, 1 H), 2.01 (dd, J = 16.8, 6.8 Hz, 1 H), 1.75 (ddd, J = 12.0, 3.2, 2.0 Hz, 1 H), 1.71 (s, 3 H), 1.45 (t, J = 12.0 Hz, 1 H), 1.35 (br s, 1 H), 1.05 (s, 3 H), 1.04 (s, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 138.1 (Cq), 134.7 (CH), 125.6 (Cq), 118.7 (CH2), 65.1 (CH), 48.3 (CH2), 42.2 (CH2), 36.6 (Cq), 30.0 (CH3), 28.3 (CH3), 21.2 (CH3). ESI-HRMS: m/z calcd for C11H18ONa [M + Na]+: 189.1255; found: 189.1255.

12

Analytical Data
IR (neat): 3345, 2965, 2925, 1041, 892 cm. ¹H NMR (400 MHz, CDCl3): δ = 5.99 (s, 1 H), 4.98 (s, 1 H), 4.79 (s, 1 H), 3.99-3.92 (m, 1 H), 2.37 (dd, J = 16.4, 3.2 Hz, 1 H), 2.30 (dd, J = 16.4, 9.6 Hz, 1 H), 1.84 (ddd, J = 13.2, 3.6, 1.6 Hz, 1 H), 1.81 (s, 3 H), 1.70 (dd, J = 13.2, 9.6 Hz, 1 H), 1.45 (br s, 1 H), 1.15 (s, 3 H), 1.14 (s, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 153.5 (Cq), 133.1 (Cq), 127.9 (CH), 111.7 (CH2), 67.7 (CH), 52.0 (CH2), 43.9 (CH2), 37.2 (Cq), 31.8 (CH3), 29.4 (CH3), 26.7 (CH3). ESI-HRMS: m/z calcd for C11H18ONa [M + Na]+: 189.1255; found: 189.1258.

13

The Wittig and Horner-Wadsworth-Emmons reactions of 13a,b were examined under various conditions; however, only starting aldehyde was recovered.

14

It has been reported that the aldol reaction of 13a with acetone provided 1; however, the yield was not described. [7e] When the reaction was attempted under the same conditions as reported, 1 was not produced at all.

18

Analytical Data
IR (neat): 3409, 2960, 2926, 1672, 1606, 1363, 1257, 1051 cm. ¹H NMR (400 MHz, CDCl3): δ = 7.21 (d, J = 16.4 Hz, 1 H), 6.11 (d, J = 16.4 Hz, 1 H), 4.06-3.95 (m, 1 H), 2.44 (dd, J = 17.6, 5.2 Hz, 1 H), 2.30 (s, 3 H), 2.09 (dd, J = 17.6, 9.6, 1 H), 1.80 (ddd, J = 12.4, 3.2, 2.0 Hz, 1 H), 1.78 (s, 3 H), 1.49 (t, J = 12.4 Hz, 1 H), 1.25 (br s, 1 H), 1.12 (s, 3 H), 1.11 (s, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 198.5 (Cq), 142.3 (CH), 135.7 (Cq), 132.4 (CH), 132.2 (Cq), 64.5 (CH), 48.4 (CH2), 42.8 (CH2), 36.9 (Cq), 30.1 (CH3), 28.6 (CH3), 27.3 (CH3), 21.5 (CH3). ESI-HRMS: m/z calcd for C13H21O2
[M + H]+: 209.1542; found: 209.1539.

19

The optical resolution has been successfully achieved by Khachik et al. [7h]