Subscribe to RSS
DOI: 10.1055/s-0031-1290353
Total Synthesis of (±)-3-Hydroxy-β-ionone through a Ring-Closing Enyne Metathesis
Publication History
Publication Date:
13 February 2012 (online)
Abstract
The total synthesis of (±)-3-hydroxy-β-ionone, a bisnorsesquiterpene having allelopathic activity, has been accomplished employing an enyne metathesis for the construction of the C1-C8 segment and two-carbon elongation via a nitrile oxide-alkene [3+2] cycloaddition as the key steps.
Key words
enyne metathesis - total synthesis - ionones - nitrile oxide - cycloaddition
-
1a
Fujimori T.Kasuga R.Noguchi M.Kaneko H. Agric. Biol. Chem. 1974, 38: 891 -
1b
Shibata S.Katsuyama A.Noguchi M. Agric. Biol. Chem. 1978, 42: 195 -
2a
Aasen AJ.Kimland B.Enzell CR. Acta Chem. Scand. 1971, 25: 1481 -
2b
Kimland B.Aasen AJ.Enzell CR. Acta Chem. Scand. 1972, 26: 2177 -
2c
Aasen AJ.Kimland B.Enzell CR. Acta Chem. Scand. 1973, 27: 2107 -
2d
Fujimori T.Kasuga R.Matsushita H.Kaneko H.Noguchi M. Agric. Biol. Chem. 1976, 40: 303 -
2e
Behr D.Wahlberg I.Nishida T.Enzell CR. Acta Chem. Scand. 1978, 32: 391 -
2f
D’Abrosca B.DellaGreca M.Fiorentino A.Monaco P.Oriano P.Temussi F. Phytochemistry 2004, 65: 497 -
2g
Park JH.Lee DG.Yeon SW.Kwon HS.Ko JH.Shin DJ.Park HS.Kim YS.Bang MH.Baek NI. Arch. Pharm. Res. 2011, 34: 533 - 3
Kato-Noguchi H.Yamamoto M.Tamura K.Teruya T.Suenaga K.Fujii Y. Plant Growth Regul. 2010, 60: 127 - For a review, see:
-
4a
Kamei T.Morimoto S.Shishido K. J. Synth. Org. Chem. Jpn. 2006, 64: 1021 - For recent synthetic studies, see:
-
4b
Kanematsu M.Soga K.Manabe Y.Morimoto S.Yoshida M.Shishido K. Tetrahedron 2011, 67: 4758 -
4c
Yokoe H.Mitsuhashi C.Matsuoka Y.Yoshimura T.Yoshida M.Shishido K.
J. Am. Chem. Soc. 2011, 133: 8854 - 5
Kikuchi D.Yoshida M.Shishido K. Tetrahedron Lett. 2012, 53: 145 - For reviews, see:
-
6a
Connon SJ.Blechert S. Angew. Chem. Int. Ed. 2003, 42: 1900 -
6b
Poulson CS.Madsen R. Synthesis 2003, 1 -
6c
Diber ST.Giessert A. Chem. Rev. 2004, 104: 1317 -
6d
Mori M. J. Synth. Org. Chem. Jpn. 2005, 63: 5 - For the syntheses of racemic 1, see:
-
7a
Loeber DE.Russell SW.Toube TP.Weedon CL. J. Chem. Soc. C 1971, 404 -
7b
Takazawa O.Tamura H.Kogami K.Hayashi K. Bull. Chem. Soc. Jpn. 1982, 55: 1907 - For the syntheses of optically active 1, see:
-
7c
Mori K. Tetrahedron Lett. 1973, 28: 2635 -
7d
Mayer H. Helv. Chim. Acta 1980, 63: 154 -
7e
Parry AD.Neill SJ.Horgan R. Phytochemistry 1990, 29: 1033 -
7f
Ito M.
J. Chem. Soc., Perkin Trans. 1 1998, 2565 -
7g
Khachik F.Chang AN. J. Org. Chem. 2009, 74: 3875 -
7h
Khachik F.Chang AN. Synthesis 2011, 509 - 8
McMurry JE.Mats JR.Kees KL. Tetrahedron 1987, 43: 5489 - For the syntheses of five-membered hetero- and carbocyclic dienes from the precursors with a 1,1-disubstituted alkene and an acetylene with a quaternary carbon center at the propargylic position, see:
-
9a
Kitamura T.Sato Y.Mori M. Chem. Commun. 2001, 1258 -
9b
Kitamura T.Sato Y.Mori M. Adv. Synth. Catal. 2002, 344: 678 -
9c
Fürstner A.Ackermann L.Gabor B.Goddard R.Lehmann CW.Mynott R.Stelzer F.Thiel OR. Chem. Eur. J. 2001, 7: 3236 - 10
Mori M.Sakakibara N.Kinoshita A. J. Org. Chem. 1998, 63: 6082 - 15
Kozikowski AP. Acc. Chem. Res. 1984, 17: 410 - 16
Zhang Z.Curran DP. J. Chem. Soc., Perkin Trans. 1 1991, 2627 - 17
Curran DP. J. Am. Chem. Soc. 1982, 104: 4042
References and Notes
Analytical Data
IR
(neat): 3334, 2922, 1460, 1362, 1049, 918 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 6.16
(ddd, J = 13.2,
7.2, 1.6 Hz, 1 H), 5.26 (dd, J = 7.2,
2.4 Hz, 1 H), 4.98 (dd, J = 13.2,
2.4 Hz, 1 H), 4.05-3.92 (m, 1 H), 2.35 (dd, J = 16.8,
5.6 Hz, 1 H), 2.01 (dd, J = 16.8,
6.8 Hz, 1 H), 1.75 (ddd, J = 12.0,
3.2, 2.0 Hz, 1 H), 1.71 (s, 3 H), 1.45 (t, J = 12.0
Hz, 1 H), 1.35 (br s, 1 H), 1.05 (s, 3 H), 1.04 (s, 3 H). ¹³C
NMR (100 MHz, CDCl3): δ = 138.1
(Cq), 134.7 (CH), 125.6 (Cq), 118.7 (CH2), 65.1 (CH),
48.3 (CH2), 42.2 (CH2), 36.6 (Cq), 30.0 (CH3),
28.3 (CH3), 21.2 (CH3). ESI-HRMS: m/z calcd for C11H18ONa [M + Na]+:
189.1255; found: 189.1255.
Analytical Data
IR
(neat): 3345, 2965, 2925, 1041, 892 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 5.99
(s, 1 H), 4.98 (s, 1 H), 4.79 (s, 1 H), 3.99-3.92 (m, 1
H), 2.37 (dd, J = 16.4,
3.2 Hz, 1 H), 2.30 (dd, J = 16.4,
9.6 Hz, 1 H), 1.84 (ddd, J = 13.2,
3.6, 1.6 Hz, 1 H), 1.81 (s, 3 H), 1.70 (dd, J = 13.2,
9.6 Hz, 1 H), 1.45 (br s, 1 H), 1.15 (s, 3 H), 1.14 (s, 3 H). ¹³C
NMR (100 MHz, CDCl3): δ = 153.5
(Cq), 133.1 (Cq), 127.9 (CH), 111.7 (CH2), 67.7 (CH),
52.0 (CH2), 43.9 (CH2), 37.2 (Cq), 31.8 (CH3),
29.4 (CH3), 26.7 (CH3). ESI-HRMS: m/z calcd for C11H18ONa [M + Na]+:
189.1255; found: 189.1258.
The Wittig and Horner-Wadsworth-Emmons reactions of 13a,b were examined under various conditions; however, only starting aldehyde was recovered.
14It has been reported that the aldol reaction of 13a with acetone provided 1; however, the yield was not described. [7e] When the reaction was attempted under the same conditions as reported, 1 was not produced at all.
18
Analytical Data
IR
(neat): 3409, 2960, 2926, 1672, 1606, 1363, 1257, 1051 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 7.21
(d, J = 16.4
Hz, 1 H), 6.11 (d, J = 16.4
Hz, 1 H), 4.06-3.95 (m, 1 H), 2.44 (dd, J = 17.6,
5.2 Hz, 1 H), 2.30 (s, 3 H), 2.09 (dd, J = 17.6, 9.6,
1 H), 1.80 (ddd, J = 12.4,
3.2, 2.0 Hz, 1 H), 1.78 (s, 3 H), 1.49 (t, J = 12.4
Hz, 1 H), 1.25 (br s, 1 H), 1.12 (s, 3 H), 1.11 (s, 3 H). ¹³C
NMR (100 MHz, CDCl3): δ = 198.5
(Cq), 142.3 (CH), 135.7 (Cq), 132.4 (CH), 132.2 (Cq), 64.5 (CH),
48.4 (CH2), 42.8 (CH2), 36.9 (Cq), 30.1 (CH3),
28.6 (CH3), 27.3 (CH3), 21.5 (CH3).
ESI-HRMS: m/z calcd for C13H21O2
[M + H]+:
209.1542; found: 209.1539.
The optical resolution has been successfully achieved by Khachik et al. [7h]