Int J Angiol 2011; 20(3): 121-134
DOI: 10.1055/s-0031-1283220
REVIEW ARTICLE

© Thieme Medical Publishers

Nitric Oxide-Mediated Coronary Flow Regulation in Patients with Coronary Artery Disease: Recent Advances

Noboru Toda1 , Shinichi Tanabe2 , Sadanobu Nakanishi3
  • 1Toyama Institute for Cardiovascular Pharmacology Research, Osaka, Japan
  • 2Cardiology Section, Department of Internal Medicine, Social Insurance Kyoto Hospital, Japan
  • 3Department of Internal Medicine, Kyoto Prefectural University of Medicine at Kyoto, Japan
Further Information

Publication History

Publication Date:
04 July 2011 (online)

ABSTRACT

Nitric oxide (NO) formed via endothelial NO synthase (eNOS) plays crucial roles in the regulation of coronary blood flow through vasodilatation and decreased vascular resistance, and in inhibition of platelet aggregation and adhesion, leading to the prevention of coronary circulatory failure, thrombosis, and atherosclerosis. Endothelial function is impaired by several pathogenic factors including smoking, chronic alcohol intake, hypercholesterolemia, obesity, hyperglycemia, and hypertension. The mechanisms underlying endothelial dysfunction include reduced NO synthase (NOS) expression and activity, decreased NO bioavailability, and increased production of oxygen radicals and endogenous NOS inhibitors. Atrial fibrillation appears to be a risk factor for endothelial dysfunction. Endothelial dysfunction is an important predictor of coronary artery disease (CAD) in humans. Penile erectile dysfunction, associated with impaired bioavailability of NO produced by eNOS and neuronal NOS, is also considered to be highly predictive of ischemic heart disease. There is evidence suggesting an important role of nitrergic innervation in coronary blood flow regulation. Prophylactic and therapeutic measures to eliminate pathogenic factors inducing endothelial and nitrergic nerve dysfunction would be quite important in preventing the genesis and development of CAD.

REFERENCES

  • 1 Moncada S, Palmer R M, Higgs E A. Nitric oxide: physiology, pathophysiology, and pharmacology.  Pharmacol Rev. 1991;  43 (2) 109-142
  • 2 Toda N, Okamura T. The pharmacology of nitric oxide in the peripheral nervous system of blood vessels.  Pharmacol Rev. 2003;  55 (2) 271-324
  • 3 Toda N, Ayajiki K, Okamura T. Cerebral blood flow regulation by nitric oxide: recent advances.  Pharmacol Rev. 2009;  61 (1) 62-97
  • 4 Sitia S, Tomasoni L, Atzeni F et al.. From endothelial dysfunction to atherosclerosis.  Autoimmun Rev. 2010;  9 (12) 830-834
  • 5 Tang E H, Vanhoutte P M. Endothelial dysfunction: a strategic target in the treatment of hypertension?.  Pflugers Arch. 2010;  459 (6) 995-1004
  • 6 Malyszko J. Mechanism of endothelial dysfunction in chronic kidney disease.  Clin Chim Acta. 2010;  411 (19-20) 1412-1420
  • 7 Dharmashankar K, Widlansky M E. Vascular endothelial function and hypertension: insights and directions.  Curr Hypertens Rep. 2010;  12 (6) 448-455
  • 8 Toda N, Imamura T, Okamura T. Alteration of nitric oxide-mediated blood flow regulation in diabetes mellitus.  Pharmacol Ther. 2010;  127 (3) 189-209
  • 9 Furchgott R F, Zawadzki J V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine.  Nature. 1980;  288 (5789) 373-376
  • 10 Bredt D S, Snyder S H. Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme.  Proc Natl Acad Sci U S A. 1990;  87 (2) 682-685
  • 11 Förstermann U, Pollock J S, Schmidt H H, Heller M, Murad F. Calmodulin-dependent endothelium-derived relaxing factor/nitric oxide synthase activity is present in the particulate and cytosolic fractions of bovine aortic endothelial cells.  Proc Natl Acad Sci U S A. 1991;  88 (5) 1788-1792
  • 12 Michel J B, Feron O, Sacks D, Michel T. Reciprocal regulation of endothelial nitric-oxide synthase by Ca2+-calmodulin and caveolin.  J Biol Chem. 1997;  272 (25) 15583-15586
  • 13 Toda N, Okamura T. Endothelium-dependent and -independent responses to vasoactive substances of isolated human coronary arteries.  Am J Physiol. 1989;  257 (3 Pt 2) H988-H995
  • 14 Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher A M. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation.  Nature. 1999;  399 (6736) 601-605
  • 15 Bernier S G, Haldar S, Michel T. Bradykinin-regulated interactions of the mitogen-activated protein kinase pathway with the endothelial nitric-oxide synthase.  J Biol Chem. 2000;  275 (39) 30707-30715
  • 16 Toda N, Okamura T. Possible role of nitric oxide in transmitting information from vasodilator nerve to cerebroarterial muscle.  Biochem Biophys Res Commun. 1990;  170 (1) 308-313
  • 17 Vallance P, Leiper J. Cardiovascular biology of the asymmetric dimethylarginine: dimethylarginine dimethylaminohydrolase pathway.  Arterioscler Thromb Vasc Biol. 2004;  24 (6) 1023-1030
  • 18 Moore P K, Babbedge R C, Wallace P, Gaffen Z A, Hart S L. 7-Nitro indazole, an inhibitor of nitric oxide synthase, exhibits anti-nociceptive activity in the mouse without increasing blood pressure.  Br J Pharmacol. 1993;  108 (2) 296-297
  • 19 Furfine E S, Harmon M F, Paith J E et al.. Potent and selective inhibition of human nitric oxide synthases. Selective inhibition of neuronal nitric oxide synthase by S-methyl-L-thiocitrulline and S-ethyl-L-thiocitrulline.  J Biol Chem. 1994;  269 (43) 26677-26683
  • 20 Garthwaite J, Southam E, Boulton C L, Nielsen E B, Schmidt K, Mayer B. Potent and selective inhibition of nitric oxide-sensitive guanylyl cyclase by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one.  Mol Pharmacol. 1995;  48 (2) 184-188
  • 21 Chen S T, Maruthur N M, Appel L J. The effect of dietary patterns on estimated coronary heart disease risk: results from the Dietary Approaches to Stop Hypertension (DASH) trial.  Circ Cardiovasc Qual Outcomes. 2010;  3 (5) 484-489
  • 22 Al-Solaiman Y, Jesri A, Mountford W K, Lackland D T, Zhao Y, Egan B M. DASH lowers blood pressure in obese hypertensives beyond potassium, magnesium and fibre.  J Hum Hypertens. 2010;  24 (4) 237-246
  • 23 Blumenthal J A, Babyak M A, Hinderliter A et al.. Effects of the DASH diet alone and in combination with exercise and weight loss on blood pressure and cardiovascular biomarkers in men and women with high blood pressure: the ENCORE study.  Arch Intern Med. 2010;  170 (2) 126-135
  • 24 Katz S D, Hryniewicz K, Hriljac I et al.. Vascular endothelial dysfunction and mortality risk in patients with chronic heart failure.  Circulation. 2005;  111 (3) 310-314
  • 25 Gibson C M, Cannon C P, Daley W L et al.. TIMI frame count: a quantitative method of assessing coronary artery flow.  Circulation. 1996;  93 (5) 879-888
  • 26 Sezgin N, Barutcu I, Sezgin A T et al.. Plasma nitric oxide level and its role in slow coronary flow phenomenon.  Int Heart J. 2005;  46 (3) 373-382
  • 27 Kawano H, Yoshida T, Miyao Y et al.. The relationship between endothelial function in the brachial artery and intima plus media thickening of the coronary arteries in patients with chest pain syndrome.  Atherosclerosis. 2007;  195 (2) 361-366
  • 28 Khalil A, Sareen R, Mallika V, Chowdhury V. Non-invasive evaluation of endothelial function, arterial mechanics and nitric oxide levels in children of hypertensive parents.  Indian Heart J. 2008;  60 (1) 34-38
  • 29 Higashi Y, Goto C, Hidaka T et al.. Oral infection-inflammatory pathway, periodontitis, is a risk factor for endothelial dysfunction in patients with coronary artery disease.  Atherosclerosis. 2009;  206 (2) 604-610
  • 30 Lavi S, Yang E H, Prasad A et al.. The interaction between coronary endothelial dysfunction, local oxidative stress, and endogenous nitric oxide in humans.  Hypertension. 2008;  51 (1) 127-133
  • 31 Akar J G, Jeske W, Wilber D J. Acute onset human atrial fibrillation is associated with local cardiac platelet activation and endothelial dysfunction.  J Am Coll Cardiol. 2008;  51 (18) 1790-1793
  • 32 Guazzi M, Arena R. Endothelial dysfunction and pathophysiological correlates in atrial fibrillation.  Heart. 2009;  95 (2) 102-106
  • 33 Tarr F I, Sasvári M, Tarr M, Rácz R. Evidence of nitric oxide produced by the internal mammary artery graft in venous drainage of the recipient coronary artery.  Ann Thorac Surg. 2005;  80 (5) 1728-1731
  • 34 Raichlin E, Kushwaha S S, Lennon R J et al.. Features of cardiac allograft coronary endothelial dysfunction.  Am J Cardiol. 2009;  103 (8) 1154-1158
  • 35 McNulty P H, Tulli M A, Robertson B J et al.. Effect of simulated postprandial hyperglycemia on coronary blood flow in cardiac transplant recipients.  Am J Physiol Heart Circ Physiol. 2007;  293 (1) H103-H108
  • 36 Prior J O, Quiñones M J, Hernandez-Pampaloni M et al.. Coronary circulatory dysfunction in insulin resistance, impaired glucose tolerance, and type 2 diabetes mellitus.  Circulation. 2005;  111 (18) 2291-2298
  • 37 Chen Z, Li C S, Zhang J, Pang B S, Xia C Q, Liu X F. Relationship between endothelial dysfunction and serum homocysteine in patients with coronary lesions.  Chin Med Sci J. 2005;  20 (1) 63-66
  • 38 Lekakis J P, Ikonomidis I, Tsibida M et al.. Genetic variations of the endothelial nitric oxide synthase gene are related to increased levels of C-reactive protein and macrophage-colony stimulating-factor in patients with coronary artery disease.  Thromb Haemost. 2006;  96 (4) 520-528
  • 39 Toda N, Toda H. Nitric oxide-mediated blood flow regulation as affected by smoking and nicotine.  Eur J Pharmacol. 2010;  649 (1-3) 1-13
  • 40 Toda N, Ayajiki K. Vascular actions of nitric oxide as affected by exposure to alcohol.  Alcohol Alcohol. 2010;  45 (4) 347-355
  • 41 Toda N, Arakawa K. Salt-induced hemodynamic regulation mediated by nitric oxide.  J Hypertens. 2011;  29 (3) 415-424
  • 42 Lentz S R, Rodionov R N, Dayal S. Hyperhomocysteinemia, endothelial dysfunction, and cardiovascular risk: the potential role of ADMA.  Atheroscler Suppl. 2003;  4 (4, Suppl) 61-65
  • 43 Busse R, Fleming I. Nitric oxide, nitric oxide synthase, and hypertensive vascular disease.  Curr Hypertens Rep. 1999;  1 (1) 88-95
  • 44 Ogawa T, Kimoto M, Sasaoka K. Purification and properties of a new enzyme, NG,NG-dimethylarginine dimethylaminohydrolase, from rat kidney.  J Biol Chem. 1989;  264 (17) 10205-10209
  • 45 Ogawa T, Kimoto M, Sasaoka K. Dimethylarginine:pyruvate aminotransferase in rats. Purification, properties, and identity with alanine:glyoxylate aminotransferase 2.  J Biol Chem. 1990;  265 (34) 20938-20945
  • 46 Selcuk M T, Selcuk H, Temizhan A et al.. Asymmetric dimethylarginine plasma concentrations and L-arginine/asymmetric dimethylarginine ratio in patients with slow coronary flow.  Coron Artery Dis. 2007;  18 (7) 545-551
  • 47 von Haehling S, Bode-Böger S M, Martens-Lobenhoffer J et al.. Elevated levels of asymmetric dimethylarginine in chronic heart failure: a pathophysiologic link between oxygen radical load and impaired vasodilator capacity and the therapeutic effect of allopurinol.  Clin Pharmacol Ther. 2010;  88 (4) 506-512
  • 48 Okyay K, Cengel A, Sahinarslan A et al.. Plasma asymmetric dimethylarginine and L-arginine levels in patients with cardiac syndrome X.  Coron Artery Dis. 2007;  18 (7) 539-544
  • 49 Wang Z, Tang W H, Cho L, Brennan D M, Hazen S L. Targeted metabolomic evaluation of arginine methylation and cardiovascular risks: potential mechanisms beyond nitric oxide synthase inhibition.  Arterioscler Thromb Vasc Biol. 2009;  29 (9) 1383-1391
  • 50 Tang W H, Wang Z, Cho L, Brennan D M, Hazen S L. Diminished global arginine bioavailability and increased arginine catabolism as metabolic profile of increased cardiovascular risk.  J Am Coll Cardiol. 2009;  53 (22) 2061-2067
  • 51 Cavusoglu E, Ruwende C, Chopra V et al.. Relation of baseline plasma ADMA levels to cardiovascular morbidity and mortality at two years in men with diabetes mellitus referred for coronary angiography.  Atherosclerosis. 2010;  210 (1) 226-231
  • 52 Turiel M, Atzeni F, Tomasoni L et al.. Non-invasive assessment of coronary flow reserve and ADMA levels: a case-control study of early rheumatoid arthritis patients.  Rheumatology (Oxford). 2009;  48 (7) 834-839
  • 53 Thum T, Tsikas D, Stein S et al.. Suppression of endothelial progenitor cells in human coronary artery disease by the endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine.  J Am Coll Cardiol. 2005;  46 (9) 1693-1701
  • 54 Surdacki A, Marewicz E, Wieczorek-Surdacka E et al.. Synergistic effects of asymmetrical dimethyl-L-arginine accumulation and endothelial progenitor cell deficiency on renal function decline during a 2-year follow-up in stable angina.  Nephrol Dial Transplant. 2010;  25 (8) 2576-2583
  • 55 Kocaman S A. Asymmetric dimethylarginine, NO and collateral growth.  Anadolu Kardiyol Derg. 2009;  9 (5) 417-420
  • 56 Lamblin N, Cuilleret F J, Helbecque N et al.. A common variant of endothelial nitric oxide synthase (Glu298Asp) is associated with collateral development in patients with chronic coronary occlusions.  BMC Cardiovasc Disord. 2005;  5 27
  • 57 Ajtay Z, Scalera F, Cziráki A et al.. Stent placement in patients with coronary heart disease decreases plasma levels of the endogenous nitric oxide synthase inhibitor ADMA.  Int J Mol Med. 2009;  23 (5) 651-657
  • 58 Cagirci G, Cay S, Karakurt O et al.. Association between plasma asymmetrical dimethylarginine activity and saphenous vein graft disease in patients with coronary bypass.  Coron Artery Dis. 2010;  21 (1) 20-25
  • 59 Toda N, Okamura T. Modulation of renal blood flow and vascular tone by neuronal nitric oxide synthase-derived nitric oxide.  J Vasc Res. 2011;  48 (1) 1-10
  • 60 Toda N, Ayajiki K, Okamura T. Control of systemic and pulmonary blood pressure by nitric oxide formed through neuronal nitric oxide synthase.  J Hypertens. 2009;  27 (10) 1929-1940
  • 61 Klimaschewski L, Kummer W, Mayer B et al.. Nitric oxide synthase in cardiac nerve fibers and neurons of rat and guinea pig heart.  Circ Res. 1992;  71 (6) 1533-1537
  • 62 Sosunov A A, Hassall C J, Loesch A, Turmaine M, Burnstock G. Ultrastructural investigation of nitric oxide synthase-immunoreactive nerves associated with coronary blood vessels of rat and guinea-pig.  Cell Tissue Res. 1995;  280 (3) 575-582
  • 63 Sequeira I M, Haberberger R V, Kummer W. Atrial and ventricular rat coronary arteries are differently supplied by noradrenergic, cholinergic and nitrergic, but not sensory nerve fibres.  Ann Anat. 2005;  187 (4) 345-355
  • 64 Yoshida K, Okamura T, Kimura H, Bredt D S, Snyder S H, Toda N. Nitric oxide synthase-immunoreactive nerve fibers in dog cerebral and peripheral arteries.  Brain Res. 1993;  629 (1) 67-72
  • 65 Seddon M, Melikian N, Dworakowski R et al.. Effects of neuronal nitric oxide synthase on human coronary artery diameter and blood flow in vivo.  Circulation. 2009;  119 (20) 2656-2662
  • 66 Adams J A, Wu D, Bassuk J et al.. Nitric oxide synthase isoform inhibition before whole body ischemia reperfusion in pigs: vital or protective?.  Resuscitation. 2007;  74 (3) 516-525
  • 67 Nakata S, Tsutsui M, Shimokawa H et al.. Spontaneous myocardial infarction in mice lacking all nitric oxide synthase isoforms.  Circulation. 2008;  117 (17) 2211-2223
  • 68 Han G, Ma H, Chintala R, Miyake K, Fulton D J, Barman S A, White R E. Nongenomic, endothelium-independent effects of estrogen on human coronary smooth muscle are mediated by type I (neuronal) NOS and PI3-kinase-Akt signaling.  Am J Physiol Heart Circ Physiol. 2007;  293 H314-H321
  • 69 Dover A R, Chia S, Ferguson J W et al.. Inducible nitric oxide synthase activity does not contribute to the maintenance of peripheral vascular tone in patients with heart failure.  Clin Sci (Lond). 2006;  111 (4) 275-280
  • 70 Ishibashi Y, Takahashi N, Tokumaru A et al.. Activation of inducible NOS in peripheral vessels and outcomes in heart failure patients.  J Card Fail. 2008;  14 (9) 724-731
  • 71 Mitani Y, Okuda Y, Shimpo H et al.. Impaired endothelial function in epicardial coronary arteries after Kawasaki disease.  Circulation. 1997;  96 (2) 454-461
  • 72 Yamakawa R, Ishii M, Sugimura T et al.. Coronary endothelial dysfunction after Kawasaki disease: evaluation by intracoronary injection of acetylcholine.  J Am Coll Cardiol. 1998;  31 (5) 1074-1080
  • 73 Kurio G H, Zhiroff K A, Jih L J, Fronek A S, Burns J C. Noninvasive determination of endothelial cell function in the microcirculation in Kawasaki syndrome.  Pediatr Cardiol. 2008;  29 (1) 121-125
  • 74 Xu M G, Men L N, Zhao C Y et al.. The number and function of circulating endothelial progenitor cells in patients with Kawasaki disease.  Eur J Pediatr. 2010;  169 (3) 289-296
  • 75 Yoshimura K, Tatsumi K, Iharada A et al.. Increased nitric oxide production by neutrophils in early stage of Kawasaki disease.  Eur J Pediatr. 2009;  168 (9) 1037-1041
  • 76 Andersson K E. Pharmacology of penile erection.  Pharmacol Rev. 2001;  53 (3) 417-450
  • 77 Toda N, Ayajiki K, Okamura T. Nitric oxide and penile erectile function.  Pharmacol Ther. 2005;  106 (2) 233-266
  • 78 Greenstein A, Chen J, Miller H, Matzkin H, Villa Y, Braf Z. Does severity of ischemic coronary disease correlate with erectile function?.  Int J Impot Res. 1997;  9 (3) 123-126
  • 79 Foroutan S K, Rajabi M. Erectile dysfunction in men with angiographically documented coronary artery disease.  Urol J. 2007;  4 (1) 28-32
  • 80 Lee J H, Ngengwe R, Jones P, Tang F, O'Keefe J H. Erectile dysfunction as a coronary artery disease risk equivalent.  J Nucl Cardiol. 2008;  15 (6) 800-803
  • 81 Yaman O, Gulpinar O, Hasan T, Ozdol C, Ertas F S, Ozgenci E. Erectile dysfunction may predict coronary artery disease: relationship between coronary artery calcium scoring and erectile dysfunction severity.  Int Urol Nephrol. 2008;  40 (1) 117-123
  • 82 Meluzín J, Vasků A, Kincl V, Panovský R, Srámková T. Association of coronary artery disease, erectile dysfunction, and endothelial nitric oxide synthase polymorphisms.  Heart Vessels. 2009;  24 (3) 157-163
  • 83 Chew K K, Finn J, Stuckey B et al.. Erectile dysfunction as a predictor for subsequent atherosclerotic cardiovascular events: findings from a linked-data study.  J Sex Med. 2010;  7 (1 Pt 1) 192-202
  • 84 Böhm M, Baumhäkel M, Teo K ONTARGET/TRANSCEND Erectile Dysfunction Substudy Investigators et al. Erectile dysfunction predicts cardiovascular events in high-risk patients receiving telmisartan, ramipril, or both: The ONgoing Telmisartan Alone and in combination with Ramipril Global Endpoint Trial/Telmisartan Randomized AssessmeNt Study in ACE iNtolerant subjects with cardiovascular Disease (ONTARGET/TRANSCEND) Trials.  Circulation. 2010;  121 (12) 1439-1446
  • 85 Vlachopoulos C, Ioakeimidis N, Terentes-Printzios D, Stefanadis C. The triad: erectile dysfunction—endothelial dysfunction—cardiovascular disease.  Curr Pharm Des. 2008;  14 (35) 3700-3714
  • 86 Kapur V, Chien C V, Fuess J E, Schwarz E R. The relationship between erectile dysfunction and cardiovascular disease. Part II: The role of PDE-5 inhibition in sexual dysfunction and cardiovascular disease.  Rev Cardiovasc Med. 2008;  9 (3) 187-195
  • 87 Jackson G, Boon N, Eardley I et al.. Erectile dysfunction and coronary artery disease prediction: evidence-based guidance and consensus.  Int J Clin Pract. 2010;  64 (7) 848-857
  • 88 Lauer T, Kleinbongard P, Rath J, Schulz R, Kelm M, Rassaf T. L-arginine preferentially dilates stenotic segments of coronary arteries thereby increasing coronary flow.  J Intern Med. 2008;  264 (3) 237-244
  • 89 Settergren M, Böhm F, Malmström R E, Channon K M, Pernow J. L-arginine and tetrahydrobiopterin protects against ischemia/reperfusion-induced endothelial dysfunction in patients with type 2 diabetes mellitus and coronary artery disease.  Atherosclerosis. 2009;  204 (1) 73-78
  • 90 Worthley M I, Kanani R S, Sun Y H et al.. Effects of tetrahydrobiopterin on coronary vascular reactivity in atherosclerotic human coronary arteries.  Cardiovasc Res. 2007;  76 (3) 539-546
  • 91 Tawakol A, Aziz K, Migrino R et al.. Effects of sildenafil on myocardial blood flow in humans with ischemic heart disease.  Coron Artery Dis. 2005;  16 (7) 443-449
  • 92 Baldus S, Köster R, Chumley P et al.. Oxypurinol improves coronary and peripheral endothelial function in patients with coronary artery disease.  Free Radic Biol Med. 2005;  39 (9) 1184-1190
  • 93 Noman A, Ang D S, Ogston S, Lang C C, Struthers A D. Effect of high-dose allopurinol on exercise in patients with chronic stable angina: a randomised, placebo controlled crossover trial.  Lancet. 2010;  375 (9732) 2161-2167
  • 94 Moat S J, Madhavan A, Taylor S Y et al.. High- but not low-dose folic acid improves endothelial function in coronary artery disease.  Eur J Clin Invest. 2006;  36 (12) 850-859
  • 95 Shirodaria C, Antoniades C, Lee J et al.. Global improvement of vascular function and redox state with low-dose folic acid: implications for folate therapy in patients with coronary artery disease.  Circulation. 2007;  115 (17) 2262-2270
  • 96 Dragoni S, Gori T, Di Stolfo G, Sicuro S, Forconi S, Parker J D. Folic Acid does not limit endothelial dysfunction induced by ischemia and reperfusion: a human study.  J Cardiovasc Pharmacol. 2005;  46 (4) 494-497
  • 97 Davignon J. Beneficial cardiovascular pleiotropic effects of statins.  Circulation. 2004;  109 (23, Suppl 1) III39-III43
  • 98 Almuti K, Rimawi R, Spevack D, Ostfeld R J. Effects of statins beyond lipid lowering: potential for clinical benefits.  Int J Cardiol. 2006;  109 (1) 7-15
  • 99 Strey C H, Young J M, Lainchbury J H et al.. Short-term statin treatment improves endothelial function and neurohormonal imbalance in normocholesterolaemic patients with non-ischaemic heart failure.  Heart. 2006;  92 (11) 1603-1609
  • 100 Young J M, Strey C H, George P M et al.. Effect of atorvastatin on plasma levels of asymmetric dimethylarginine in patients with non-ischaemic heart failure.  Eur J Heart Fail. 2008;  10 (5) 463-466
  • 101 Paul J D, Powell T M, Thompson M et al.. Endothelial progenitor cell mobilization and increased intravascular nitric oxide in patients undergoing cardiac rehabilitation.  J Cardiopulm Rehabil Prev. 2007;  27 (2) 65-73
  • 102 Chen H, Ren J Y, Xing Y et al.. Short-term withdrawal of simvastatin induces endothelial dysfunction in patients with coronary artery disease: a dose-response effect dependent on endothelial nitric oxide synthase.  Int J Cardiol. 2009;  131 (3) 313-320
  • 103 Kawata T, Daimon M, Hasegawa R et al.. Effect of angiotensin-converting enzyme inhibitor on serum asymmetric dimethylarginine and coronary circulation in patients with type 2 diabetes mellitus.  Int J Cardiol. 2009;  132 (2) 286-288
  • 104 Koifman B, Topilski I, Megidish R et al.. Effects of losartan + L-arginine on nitric oxide production, endothelial cell function, and hemodynamic variables in patients with heart failure secondary to coronary heart disease.  Am J Cardiol. 2006;  98 (2) 172-177
  • 105 Koh K K, Quon M J, Han S H, Chung W J, Kim J A, Shin E K. Vascular and metabolic effects of candesartan: insights from therapeutic interventions.  J Hypertens Suppl. 2006;  24 (1) S31-S38
  • 106 Toda N. Vasodilating β-adrenoceptor blockers as cardiovascular therapeutics.  Pharmacol Ther. 2003;  100 (3) 215-234
  • 107 Cleophas T J, van 't Leven M, Kauw F H, Remmert H P, Kuijper A, Zwinderman K. Celiprolol vs propranolol in unstable angina pectoris: a double-blind, randomized, parallel-group study.  Angiology. 1995;  46 (2) 137-144
  • 108 Dunn C J, Spencer C M. Celiprolol. An evaluation of its pharmacological properties and clinical efficacy in the management of hypertension and angina pectoris.  Drugs Aging. 1995;  7 (5) 394-411
  • 109 Togni M, Vigorito F, Windecker S et al.. Does the beta-blocker nebivolol increase coronary flow reserve?.  Cardiovasc Drugs Ther. 2007;  21 (2) 99-108
  • 110 Galderisi M, D'Errico A. Beta-blockers and coronary flow reserve: the importance of a vasodilatory action.  Drugs. 2008;  68 (5) 579-590
  • 111 Akçay A, Acar G, Kurutaş E et al.. Beneficial effects of nebivolol treatment on oxidative stress parameters in patients with slow coronary flow.  Turk Kardiyol Dern Ars. 2010;  38 (4) 244-249
  • 112 Williams M J, Sutherland W H, McCormick M P, Yeoman D J, de Jong S A. Aged garlic extract improves endothelial function in men with coronary artery disease.  Phytother Res. 2005;  19 (4) 314-319
  • 113 Wu Y, Li S, Cui W, Zu X, Wang F, Du J. Ginkgo biloba extract improves coronary blood flow in patients with coronary artery disease: role of endothelium-dependent vasodilation.  Planta Med. 2007;  73 (7) 624-628
  • 114 Wu Y Z, Li S Q, Zu X G, Du J, Wang F F. Ginkgo biloba extract improves coronary artery circulation in patients with coronary artery disease: contribution of plasma nitric oxide and endothelin-1.  Phytother Res. 2008;  22 (6) 734-739
  • 115 Parnell M M, Holst D P, Kaye D M. Augmentation of endothelial function following exercise training is associated with increased L-arginine transport in human heart failure.  Clin Sci (Lond). 2005;  109 (6) 523-530
  • 116 Duncker D J, Bache R J. Regulation of coronary blood flow during exercise.  Physiol Rev. 2008;  88 (3) 1009-1086
  • 117 Michaels A D, Accad M, Ports T A, Grossman W. Left ventricular systolic unloading and augmentation of intracoronary pressure and Doppler flow during enhanced external counterpulsation.  Circulation. 2002;  106 (10) 1237-1242
  • 118 Akhtar M, Wu G F, Du Z M, Zheng Z S, Michaels A D. Effect of external counterpulsation on plasma nitric oxide and endothelin-1 levels.  Am J Cardiol. 2006;  98 (1) 28-30
  • 119 Braith R W, Conti C R, Nichols W W et al.. Enhanced external counterpulsation improves peripheral artery flow-mediated dilation in patients with chronic angina: a randomized sham-controlled study.  Circulation. 2010;  122 (16) 1612-1620
  • 120 Yao D K, Jia S Q, Wang L et al.. Therapeutic effect of urapidil on myocardial perfusion in patients with ST-elevation acute coronary syndrome.  Eur J Intern Med. 2009;  20 (2) 152-157
  • 121 Miwa Y, Masai H, Shimizu M. Differential effects of calcium-channel blockers on vascular endothelial function in patients with coronary spastic angina.  Circ J. 2009;  73 (4) 713-717
  • 122 Topal E, Ozdemir R, Barutcu I et al.. The effects of trimetazidine on heart rate variability in patients with slow coronary artery flow.  J Electrocardiol. 2006;  39 (2) 211-218
  • 123 Nohria A, Grunert M E, Rikitake Y et al.. Rho kinase inhibition improves endothelial function in human subjects with coronary artery disease.  Circ Res. 2006;  99 (12) 1426-1432
  • 124 Heitzer T, Rudolph V, Schwedhelm E et al.. Clopidogrel improves systemic endothelial nitric oxide bioavailability in patients with coronary artery disease: evidence for antioxidant and antiinflammatory effects.  Arterioscler Thromb Vasc Biol. 2006;  26 (7) 1648-1652
  • 125 Baldus S, Rudolph V, Roiss M et al.. Heparins increase endothelial nitric oxide bioavailability by liberating vessel-immobilized myeloperoxidase.  Circulation. 2006;  113 (15) 1871-1878
  • 126 Budas G R, Disatnik M H, Mochly-Rosen D. Aldehyde dehydrogenase 2 in cardiac protection: a new therapeutic target?.  Trends Cardiovasc Med. 2009;  19 (5) 158-164

Noboru Toda

Toyama Institute for Cardiovascular Pharmacology Research, 7-13, 1-Chome

Azuchi-machi, Chuo-ku, Osaka 541-0052, Japan

Email: n.toda.toyama-bldg@orion.ocn.ne.jp