Semin Respir Crit Care Med 2011; 32(1): 010-021
DOI: 10.1055/s-0031-1272865
© Thieme Medical Publishers

Lung Cancer in Never Smokers

Ping Yang1
  • 1Department of Health Sciences Research, College of Medicine, Mayo Clinic, Rochester, Minnesota
Further Information

Publication History

Publication Date:
15 April 2011 (online)

ABSTRACT

Lung cancer in never smokers (LCINS) has lately been recognized as a unique disease based on rapidly gained knowledge from genomic changes to treatment responses. The focus of this article is on current knowledge and challenges with regard to LCINS expanded from recent reviews highlighting five areas: (1) distribution of LCINS by temporal trends, geographic regions, and populations; (2) three well-recognized environmental risk factors; (3) other plausible environmental risk factors; (4) prior chronic lung diseases and infectious diseases as risk factors; and (5) lifestyles as risk or protective factors. This article will also bring attention to recently published literature in two pioneering areas: (1) histological characteristics, clinical features with emerging new effective therapies, and social and psychological stigma; and (2) searching for susceptibility genes using integrated genomic approaches.

REFERENCES

  • 1 Subramanian J, Govindan R. Lung cancer in ‘never-smokers’: a unique entity.  Oncology (Williston Park). 2010;  24 (1) 29-35
  • 2 Rudin C M, Avila-Tang E, Samet J M. Lung cancer in never smokers: a call to action.  Clin Cancer Res. 2009;  15 (18) 5622-5625
  • 3 Samet J M, Avila-Tang E, Boffetta P et al.. Lung cancer in never smokers: clinical epidemiology and environmental risk factors.  Clin Cancer Res. 2009;  15 (18) 5626-5645
  • 4 Sun S, Schiller J H, Gazdar A F. Lung cancer in never smokers—a different disease.  Nat Rev Cancer. 2007;  7 (10) 778-790
  • 5 Scagliotti G V, Longo M, Novello S. Nonsmall cell lung cancer in never smokers.  Curr Opin Oncol. 2009;  21 (2) 99-104
  • 6 Lung cancer. http://en.wikipedia.org/wiki/Lung_cancer#cite_note-AUTOREF27-140
  • 7 Morgagni G B. De sedibus et causis morborum per anatomen indagatis. 1761. http://en.wikipedia.org/wiki/Lung_cancer#cite_note-AUTOREF27-140
  • 8 Bayle G L. Recherches sur la phtisie pulmonaire. Paris, France: 1810. http://en.wikipedia.org/wiki/Lung_cancer#cite_ref-AUTOREF28_141-0
  • 9 Fried B M. Primary carcinoma of the lung. Bronchiogenic cancer: a clinical and pathological study.  Medicine. 1931;  10 373-508
  • 10 Karsner H T, Saphir O. Small cell carcinomas of the lung.  Am J Pathol. 1930;  6 (5) 553-562, 3
  • 11 Weller C V. The pathology of primary carcinoma of the lung.  Archives of Pathology. 1929;  7 478-519
  • 12 Rosenblatt M B, Lisa J R. Bronchial adenoma. In: Cancer of the Lung: Pathology, Diagnosis, and Treatment. New York: Oxford University Press; 1956: 259-312
  • 13 United States Surgeon General's Advisory Committee on Smoking and Health .Smoking and Health: Report of the Advisory Committee to the Surgeon General of the Public Health Service. Washington, DC: U.S. Department of Health, Education and Welfare, Public Health Service, Government Printing Office; 1964: 19-21
  • 14 Wakelee H A, Chang E T, Gomez S L et al.. Lung cancer incidence in never smokers.  J Clin Oncol. 2007;  25 (5) 472-478
  • 15 Johansson M, Relton C, Ueland P M et al.. Serum B vitamin levels and risk of lung cancer.  JAMA. 2010;  303 (23) 2377-2385
  • 16 Subramanian J, Morgensztern D, Goodgame B et al.. Distinctive characteristics of non-small cell lung cancer (NSCLC) in the young: a surveillance, epidemiology, and end results (SEER) analysis.  J Thorac Oncol. 2010;  5 (1) 23-28
  • 17 National Research Council (NRC) Committee on the Biological Effects of Ionizing Radiations, Board on Radiation Effects Research, Commission on Life Sciences, ed .Health Risks of Radon and Other Internally Deposited Alpha-Emitters: BEIR. Washington: National Academy Press; 1988
  • 18 Harting F, Hesse W. Der Lungenkrebs, die Bergkrankheit in den schneeberger Gruben.  Viertel Gerichtl Med Oeff Sanitaetswes. 1879;  31 (102–132) 313-337
  • 19 Samet J M. Indoor radon levels may be higher than in uranium mines. Radon and lung cancer: how great is the risk?.  J Respir Dis. 1989;  10 73-83
  • 20 Archer V E, Wagoner J K, Lundin F E. Lung cancer among uranium miners in the United States.  Health Phys. 1973;  25 (4) 351-371
  • 21 Samet J M, Kutvirt D M, Waxweiler R J, Key C R. Uranium mining and lung cancer in Navajo men.  N Engl J Med. 1984;  310 (23) 1481-1484
  • 22 Gilliland F D, Hunt W C, Archer V E, Saccomanno G. Radon progeny exposure and lung cancer risk among non-smoking uranium miners.  Health Phys. 2000;  79 (4) 365-372
  • 23 Al-Zoughool M, Krewski D. Health effects of radon: a review of the literature.  Int J Radiat Biol. 2009;  85 (1) 57-69
  • 24 United States Environmental Protection Agency .Respiratory Health Effects of Passive Smoking: Lung Cancer and Other Disorders. EPA/600/606–690/006F. Washington, DC: U.S. Environmental Protection Agency, Office of Research and Development; 1992
  • 25 Yang P, Sun Z, Krowka M J et al.. Alpha1-antitrypsin deficiency carriers, tobacco smoke, chronic obstructive pulmonary disease, and lung cancer risk.  Arch Intern Med. 2008;  168 (10) 1097-1103
  • 26 Zatloukal P, Kubík A, Pauk N, Tomásek L, Petruzelka L. Adenocarcinoma of the lung among women: risk associated with smoking, prior lung disease, diet and menstrual and pregnancy history.  Lung Cancer. 2003;  41 (3) 283-293
  • 27 Thun M J, Henley S J, Burns D, Jemal A, Shanks T G, Calle E E. Lung cancer death rates in lifelong nonsmokers.  J Natl Cancer Inst. 2006;  98 (10) 691-699
  • 28 National Research Council (NRC), Committee on Health Risks of Exposure to Radon, Board on Radiation Effects Research, Commission on Life Sciences, ed .Health Effects of Exposure to Radon. (BEIR IV.) Washington. National Academy Press; 1999
  • 29 Lam W K. Lung cancer in Asian women: the environment and genes.  Respirology. 2005;  10 (4) 408-417
  • 30 Schmid K, Kuwert T, Drexler H. Radon in indoor spaces: an underestimated risk factor for lung cancer in environmental medicine.  Dtsch Arztebl Int. 2010;  107 (11) 181-186
  • 31 Guha N, Merletti F, Steenland N K, Altieri A, Cogliano V, Straif K. Lung cancer risk in painters: a meta-analysis.  Environ Health Perspect. 2010;  118 (3) 303-312
  • 32 Harris J M, Johnston I D, Rudd R, Taylor A J, Cullinan P. Cryptogenic fibrosing alveolitis and lung cancer: the BTS study.  Thorax. 2010;  65 (1) 70-76
  • 33 Liu Z Y, He X Z, Chapman R S. Smoking and other risk factors for lung cancer in Xuanwei, China.  Int J Epidemiol. 1991;  20 (1) 26-31
  • 34 Daniels C E, Jett J R. Does interstitial lung disease predispose to lung cancer?.  Curr Opin Pulm Med. 2005;  11 (5) 431-437
  • 35 Le Jeune I, Gribbin J, West J, Smith C, Cullinan P, Hubbard R. The incidence of cancer in patients with idiopathic pulmonary fibrosis and sarcoidosis in the UK.  Respir Med. 2007;  101 (12) 2534-2540
  • 36 Mizushima Y, Kobayashi M. Clinical characteristics of synchronous multiple lung cancer associated with idiopathic pulmonary fibrosis. A review of Japanese cases.  Chest. 1995;  108 (5) 1272-1277
  • 37 Yousem S A. The pulmonary pathologic manifestations of the CREST syndrome.  Hum Pathol. 1990;  21 (5) 467-474
  • 38 Brenner D R, Hung R J, Tsao M S et al.. Lung cancer risk in never-smokers: a population-based case-control study of epidemiologic risk factors.  BMC Cancer. 2010;  10 285
  • 39 Cheng Y W, Chiou H L, Chen J T et al.. Gender difference in human papillomarvirus infection for non-small cell lung cancer in Taiwan.  Lung Cancer. 2004;  46 (2) 165-170
  • 40 Engels E A, Brock M V, Chen J, Hooker C M, Gillison M, Moore R D. Elevated incidence of lung cancer among HIV-infected individuals.  J Clin Oncol. 2006;  24 (9) 1383-1388
  • 41 Kirk G D, Merlo C, O' Driscoll P et al.. HIV infection is associated with an increased risk for lung cancer, independent of smoking.  Clin Infect Dis. 2007;  45 (1) 103-110
  • 42 Laurila A L, Anttila T, Läärä E et al.. Serological evidence of an association between Chlamydia pneumoniae infection and lung cancer.  Int J Cancer. 1997;  74 (1) 31-34
  • 43 Littman A J, White E, Jackson L A et al.. Chlamydia pneumoniae infection and risk of lung cancer.  Cancer Epidemiol Biomarkers Prev. 2004;  13 (10) 1624-1630
  • 44 Smith J S, Kumlin U, Nyberg F et al.. Lack of association between serum antibodies of Chlamydia pneumoniae infection and the risk of lung cancer.  Int J Cancer. 2008;  123 (10) 2469-2471
  • 45 Hinds M W, Cohen H I, Kolonel L N. Tuberculosis and lung cancer risk in nonsmoking women.  Am Rev Respir Dis. 1982;  125 (6) 776-778
  • 46 Lim W T, Chuah K L, Leong S S, Tan E H, Toh C K. Assessment of human papillomavirus and Epstein-Barr virus in lung adenocarcinoma.  Oncol Rep. 2009;  21 (4) 971-975
  • 47 Paulus J K, Asomaning K, Kraft P, Johnson B E, Lin X, Christiani D C. Parity and risk of lung cancer in women.  Am J Epidemiol. 2010;  171 (5) 557-563
  • 48 Kabat G C, Miller A B, Rohan T E. Reproductive and hormonal factors and risk of lung cancer in women: a prospective cohort study.  Int J Cancer. 2007;  120 (10) 2214-2220
  • 49 Liu Y, Inoue M, Sobue T, Tsugane S. Reproductive factors, hormone use and the risk of lung cancer among middle-aged never-smoking Japanese women: a large-scale population-based cohort study.  Int J Cancer. 2005;  117 (4) 662-666
  • 50 Hampton T. Lung cancer mortality higher in women who used combination hormone therapy.  JAMA. 2009;  302 (6) 615-616
  • 51 Elliott A M, Hannaford P C. Use of exogenous hormones by women and lung cancer: evidence from the Royal College of General Practitioners' Oral Contraception Study.  Contraception. 2006;  73 (4) 331-335
  • 52 Benowitz N L, Lessov-Schlaggar C N, Swan G E, Jacob III P. Female sex and oral contraceptive use accelerate nicotine metabolism.  Clin Pharmacol Ther. 2006;  79 (5) 480-488
  • 53 Key T J, Allen N E, Spencer E A, Travis R C. The effect of diet on risk of cancer.  Lancet. 2002;  360 (9336) 861-868
  • 54 World Cancer Research Fund International .Food, Nutrition, Physical Activity, and the Prevention of Cancer: A Global Perspective. Washington, DC: American Institute for Cancer Research; 2007
  • 55 Mulder I, Jansen M C, Smit H A Seven Countries Study Research Group et al. Role of smoking and diet in the cross-cultural variation in lung-cancer mortality: the Seven Countries Study.  Int J Cancer. 2000;  88 (4) 665-671
  • 56 Liu Y, Sobue T, Otani T, Tsugane S. Vegetables, fruit consumption and risk of lung cancer among middle-aged Japanese men and women: JPHC study.  Cancer Causes Control. 2004;  15 (4) 349-357
  • 57 Shimazu T, Inoue M, Sasazuki S Japan Public Health Center-based Prospective Study Group et al. Isoflavone intake and risk of lung cancer: a prospective cohort study in Japan.  Am J Clin Nutr. 2010;  91 (3) 722-728
  • 58 Leitzmann M F, Koebnick C, Abnet C C et al.. Prospective study of physical activity and lung cancer by histologic type in current, former, and never smokers.  Am J Epidemiol. 2009;  169 (5) 542-553
  • 59 Yun Y H, Lim M K, Won Y J et al.. Dietary preference, physical activity, and cancer risk in men: national health insurance corporation study.  BMC Cancer. 2008;  8 366
  • 60 Sinner P, Folsom A R, Harnack L, Eberly L E, Schmitz K H. The association of physical activity with lung cancer incidence in a cohort of older women: the Iowa Women's Health Study.  Cancer Epidemiol Biomarkers Prev. 2006;  15 (12) 2359-2363
  • 61 Sui X, Lee D C, Matthews C E et al.. Influence of cardiorespiratory fitness on lung cancer mortality.  Med Sci Sports Exerc. 2010;  42 (5) 872-878
  • 62 Alberg A J, Ford J G, Samet J M. American College of Chest Physicians . Epidemiology of lung cancer: ACCP evidence-based clinical practice guidelines (2nd edition).  Chest. 2007;  132 (3, suppl) 29S-55S
  • 63 Devesa S S, Bray F, Vizcaino A P, Parkin D M. International lung cancer trends by histologic type: male:female differences diminishing and adenocarcinoma rates rising.  Int J Cancer. 2005;  117 (2) 294-299
  • 64 Hoffmann D, Hoffmann I. The changing cigarette, 1950–1995.  J Toxicol Environ Health. 1997;  50 (4) 307-364
  • 65 Schneiderman M A, Davis D L, Wagener D K. Lung cancer that is not attributable to smoking.  JAMA. 1989;  261 (18) 2635-2636
  • 66 Liam C K, Pang Y K, Leow C H, Poosparajah S, Menon A. Changes in the distribution of lung cancer cell types and patient demography in a developing multiracial Asian country: experience of a university teaching hospital.  Lung Cancer. 2006;  53 (1) 23-30
  • 67 de Andrade M, Ebbert J O, Wampfler J A et al.. Environmental tobacco smoke exposure in women with lung cancer.  Lung Cancer. 2004;  43 (2) 127-134
  • 68 Ebbert J O, Chhatwani L, Aubry M C et al.. Clinical features of bronchioloalveolar carcinoma with new histologic and staging definitions.  J Thorac Oncol. 2010;  5 (8) 1213-1220
  • 69 Yang P, Cerhan J R, Vierkant R A et al.. Adenocarcinoma of the lung is strongly associated with cigarette smoking: further evidence from a prospective study of women.  Am J Epidemiol. 2002;  156 (12) 1114-1122
  • 70 Raz D J, He B, Rosell R, Jablons D M. Bronchioloalveolar carcinoma: a review.  Clin Lung Cancer. 2006;  7 (5) 313-322
  • 71 Laskin J J, Sandler A B, Johnson D H. Redefining bronchioloalveolar carcinoma.  Semin Oncol. 2005;  32 (3) 329-335
  • 72 Travis W D, Colby T V, Shimosato Y et al.. Histological Typing of Lung and Pleural Tumours. 3rd ed. New York: Springer-Verlag; 1999: 21-47
  • 73 Gao P, Yang X, Xue Y W et al.. Promoter methylation of glutathione S-transferase pi1 and multidrug resistance gene 1 in bronchioloalveolar carcinoma and its correlation with DNA methyltransferase 1 expression.  Cancer. 2009;  115 (14) 3222-3232
  • 74 Kubo T, Yamamoto H, Ichimura K et al.. DNA methylation in small lung adenocarcinoma with bronchioloalveolar carcinoma components.  Lung Cancer. 2009;  65 (3) 328-332
  • 75 Rusch V W, Reuter V E, Kris M G et al.. Ras oncogene point mutation: an infrequent event in bronchioloalveolar cancer.  J Thorac Cardiovasc Surg. 1992;  104 (5) 1465-1469
  • 76 Marchetti A, Buttitta F, Pellegrini S et al.. Bronchioloalveolar lung carcinomas: K-ras mutations are constant events in the mucinous subtype.  J Pathol. 1996;  179 (3) 254-259
  • 77 Holst V A, Finkelstein S, Yousem S A. Bronchioloalveolar adenocarcinoma of lung: monoclonal origin for multifocal disease.  Am J Surg Pathol. 1998;  22 (11) 1343-1350
  • 78 Yamasaki M, Takeshima Y, Fujii S, Matsuura M, Tagawa K, Inai K. Correlation between morphological heterogeneity and genetic alteration within one tumor in adenocarcinomas of the lung.  Pathol Int. 2000;  50 (11) 891-896
  • 79 Yamasaki M, Takeshima Y, Fujii S et al.. Correlation between genetic alterations and histopathological subtypes in bronchiolo-alveolar carcinoma and atypical adenomatous hyperplasia of the lung.  Pathol Int. 2000;  50 (10) 778-785
  • 80 Gandara D R, West H, Chansky K et al.. Bronchioloalveolar carcinoma: a model for investigating the biology of epidermal growth factor receptor inhibition.  Clin Cancer Res. 2004;  10 (12 Pt 2) 4205s-4209s
  • 81 Wislez M, Beer D G, Wistuba I, Cadranel J, Saijo N, Johnson B E. Molecular biology, genomics, and proteomics in bronchioloalveolar carcinoma.  J Thorac Oncol. 2006;  1 (9, suppl) S8-S12
  • 82 Sakuma Y, Matsukuma S, Yoshihara M et al.. Epidermal growth factor receptor gene mutations in atypical adenomatous hyperplasias of the lung.  Mod Pathol. 2007;  20 (9) 967-973
  • 83 Dacic S, Sasatomi E, Swalsky P A, Kim D W, Finkelstein S D, Yousem S A. Loss of heterozygosity patterns of sclerosing hemangioma of the lung and bronchioloalveolar carcinoma indicate a similar molecular pathogenesis.  Arch Pathol Lab Med. 2004;  128 (8) 880-884
  • 84 Toonkel R L, Borczuk A C, Powell C A. TGF-beta signaling pathway in lung adenocarcinoma invasion.  J Thorac Oncol. 2010;  5 (2) 153-157
  • 85 Inamura K, Ninomiya H, Ishikawa Y, Matsubara O. Is the epidermal growth factor receptor status in lung cancers reflected in clinicopathologic features?.  Arch Pathol Lab Med. 2010;  134 (1) 66-72
  • 86 Ahn M J, Lee J, Park Y H et al.. Korean ethnicity as compared with white ethnicity is an independent favorable prognostic factor for overall survival in non-small cell lung cancer before and after the oral epidermal growth factor receptor tyrosine kinase inhibitor era.  J Thorac Oncol. 2010;  5 (8) 1185-1196
  • 87 Kawaguchi T, Matsumura A, Fukai S et al.. Japanese ethnicity compared with Caucasian ethnicity and never-smoking status are independent favorable prognostic factors for overall survival in non-small cell lung cancer: a collaborative epidemiologic study of the National Hospital Organization Study Group for Lung Cancer (NHSGLC) in Japan and a Southern California Regional Cancer Registry databases.  J Thorac Oncol. 2010;  5 (7) 1001-1010
  • 88 Kawaguchi T, Takada M, Kubo A et al.. Performance status and smoking status are independent favorable prognostic factors for survival in non-small cell lung cancer: a comprehensive analysis of 26,957 patients with NSCLC.  J Thorac Oncol. 2010;  5 (5) 620-630
  • 89 Meguid R A, Hooker C M, Harris J et al.. Long-term survival outcomes by smoking status in surgical and nonsurgical patients with non-small cell lung cancer: comparing never smokers and current smokers.  Chest. 2010;  138 (3) 500-509
  • 90 Riely G J. Lung cancer in 'Never-smokers': molecular factors trump risk factors.  Oncology (Williston Park). 2010;  24 (1) 38-40
  • 91 Doran E, Jackman D. Fire without smoke: lung cancer in 'never-smokers'.  Oncology (Williston Park). 2010;  24 (1) 40-43
  • 92 Burns T F, Rudin C M. Lung cancer in ‘never-smokers’: beyond EGFR mutations and EGFR-TK inhibitors.  Oncology (Williston Park). 2010;  24 (1) 48-49
  • 93 Kawaguchi T, Takada M, Kubo A et al.. Gender, histology, and time of diagnosis are important factors for prognosis: analysis of 1499 never-smokers with advanced non-small cell lung cancer in Japan.  J Thorac Oncol. 2010;  5 (7) 1011-1017
  • 94 Jian G, Songwen Z, Ling Z et al.. Prediction of epidermal growth factor receptor mutations in the plasma/pleural effusion to efficacy of gefitinib treatment in advanced non-small cell lung cancer.  J Cancer Res Clin Oncol. 2010;  136 (9) 1341-1347
  • 95 Faehling M, Eckert R, Kuom S, Kamp T, Stoiber K M, Schumann C. Benefit of erlotinib in patients with non-small-cell lung cancer is related to smoking status, gender, skin rash and radiological response but not to histology and treatment line.  Oncology. 2010;  78 (3–4) 249-258
  • 96 Reck M. A major step towards individualized therapy of lung cancer with gefitinib: the IPASS trial and beyond.  Expert Rev Anticancer Ther. 2010;  10 (6) 955-965
  • 97 Campbell L, Blackhall F, Thatcher N. Gefitinib for the treatment of non-small-cell lung cancer.  Expert Opin Pharmacother. 2010;  11 (8) 1343-1357
  • 98 Kono S A, Marshall M E, Ware K E, Heasley L E. The fibroblast growth factor receptor signaling pathway as a mediator of intrinsic resistance to EGFR-specific tyrosine kinase inhibitors in non-small cell lung cancer.  Drug Resist Updat. 2009;  12 (4–5) 95-102
  • 99 Eisenhauer E A, Therasse P, Bogaerts J et al.. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1).  Eur J Cancer. 2009;  45 (2) 228-247
  • 100 Jackman D, Pao W, Riely G J et al.. Clinical definition of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer.  J Clin Oncol. 2010;  28 (2) 357-360
  • 101 Uramoto H, Mitsudomi T. Which biomarker predicts benefit from EGFR-TKI treatment for patients with lung cancer?.  Br J Cancer. 2007;  96 (6) 857-863
  • 102 Asahina H, Yamazaki K, Kinoshita I, Yokouchi H, Dosaka-Akita H, Nishimura M. Non-responsiveness to gefitinib in a patient with lung adenocarcinoma having rare EGFR mutations S768I and V769L.  Lung Cancer. 2006;  54 (3) 419-422
  • 103 Marchetti A, Milella M, Felicioni L et al.. Clinical implications of KRAS mutations in lung cancer patients treated with tyrosine kinase inhibitors: an important role for mutations in minor clones.  Neoplasia. 2009;  11 (10) 1084-1092
  • 104 Rho J K, Choi Y J, Lee J K et al.. The role of MET activation in determining the sensitivity to epidermal growth factor receptor tyrosine kinase inhibitors.  Mol Cancer Res. 2009;  7 (10) 1736-1743
  • 105 Chen H J, Mok T S, Chen Z H et al.. Clinicopathologic and molecular features of epidermal growth factor receptor T790M mutation and c-MET amplification in tyrosine kinase inhibitor-resistant Chinese non-small cell lung cancer.  Pathol Oncol Res. 2009;  15 (4) 651-658
  • 106 Uramoto H, Iwata T, Onitsuka T, Shimokawa H, Hanagiri T, Oyama T. Epithelial-mesenchymal transition in EGFR-TKI acquired resistant lung adenocarcinoma.  Anticancer Res. 2010;  30 (7) 2513-2517
  • 107 Zhang W, Stabile L P, Keohavong P et al.. Mutation and polymorphism in the EGFR-TK domain associated with lung cancer.  J Thorac Oncol. 2006;  1 (7) 635-647
  • 108 Kook E H, Kim Y M, Kim H T et al.. Prognostic value of E-cadherin expression in non-small cell lung cancer treated with gefitinib.  Oncol Res. 2010;  18 (9) 445-451
  • 109 Ullrich R T, Zander T, Neumaier B et al.. Early detection of erlotinib treatment response in NSCLC by 3′-deoxy-3′-[F]-fluoro-L-thymidine ([F]FLT) positron emission tomography (PET).  PLoS ONE. 2008;  3 (12) e3908
  • 110 Wong M K, Lo A I, Lam B, Lam W K, Ip M S, Ho J C. Erlotinib as salvage treatment after failure to first-line gefitinib in non-small cell lung cancer.  Cancer Chemother Pharmacol. 2010;  65 (6) 1023-1028
  • 111 Costa D B, Nguyen K S, Cho B C et al.. Effects of erlotinib in EGFR mutated non-small cell lung cancers with resistance to gefitinib.  Clin Cancer Res. 2008;  14 (21) 7060-7067
  • 112 Kuo C H, Lin S M, Lee K Y et al.. Subsequent chemotherapy improves survival outcome in advanced non-small-cell lung cancer with acquired tyrosine kinase inhibitor resistance.  Clin Lung Cancer. 2010;  11 (1) 51-56
  • 113 Manson G V, Ma P C. Response to pemetrexed chemotherapy in lung adenocarcinoma-bronchioloalveolar carcinoma insensitive to erlotinib.  Clin Lung Cancer. 2010;  11 (1) 57-60
  • 114 Tang Z, Du R, Jiang S et al.. Dual MET-EGFR combinatorial inhibition against T790M-EGFR-mediated erlotinib-resistant lung cancer.  Br J Cancer. 2008;  99 (6) 911-922
  • 115 Regales L, Gong Y, Shen R et al.. Dual targeting of EGFR can overcome a major drug resistance mutation in mouse models of EGFR mutant lung cancer.  J Clin Invest. 2009;  119 (10) 3000-3010
  • 116 Sawai A, Chandarlapaty S, Greulich H et al.. Inhibition of Hsp90 down-regulates mutant epidermal growth factor receptor (EGFR) expression and sensitizes EGFR mutant tumors to paclitaxel.  Cancer Res. 2008;  68 (2) 589-596
  • 117 Kim J E, Lee D H, Choi Y et al.. Epidermal growth factor receptor tyrosine kinase inhibitors as a first-line therapy for never-smokers with adenocarcinoma of the lung having asymptomatic synchronous brain metastasis.  Lung Cancer. 2009;  65 (3) 351-354
  • 118 Olmez I, Donahue B R, Butler J S, Huang Y, Rubin P, Xu Y. Clinical outcomes in extracranial tumor sites and unusual toxicities with concurrent whole brain radiation (WBRT) and Erlotinib treatment in patients with non-small cell lung cancer (NSCLC) with brain metastasis.  Lung Cancer. 2010;  70 (2) 174-179
  • 119 Lee Y J, Shim H S, Kang Y A et al.. Dose effect of cigarette smoking on frequency and spectrum of epidermal growth factor receptor gene mutations in Korean patients with non-small cell lung cancer.  J Cancer Res Clin Oncol. 2010;  136 (12) 1937-1944
  • 120 Soda M, Choi Y L, Enomoto M et al.. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer.  Nature. 2007;  448 (7153) 561-566
  • 121 Sasaki T, Rodig S J, Chirieac L R, Jänne P A. The biology and treatment of EML4-ALK non-small cell lung cancer.  Eur J Cancer. 2010;  46 (10) 1773-1780
  • 122 Zhang X, Zhang S, Yang X et al.. Fusion of EML4 and ALK is associated with development of lung adenocarcinomas lacking EGFR and KRAS mutations and is correlated with ALK expression.  Mol Cancer. 2010;  9 188
  • 123 Takahashi T, Sonobe M, Kobayashi M et al.. Clinicopathologic features of non-small-cell lung cancer with EML4-ALK fusion gene.  Ann Surg Oncol. 2010;  17 (3) 889-897
  • 124 Shaw A T, Yeap B Y, Mino-Kenudson M et al.. Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK.  J Clin Oncol. 2009;  27 (26) 4247-4253
  • 125 Yang P, Oliveira A, Wampfler J et al.. Reduced disease-free survival associated with anaplastic lymphoma kinase translocation (ALK + ) in lung adenocarcinoma patients with no cigarette smoking history. Paper presented at: American Society for Radiation Oncology; December 9–10, 2010; Chicago, IL
  • 126 Neal J W, Sequist L V. Exciting new targets in lung cancer therapy: ALK, IGF-1R, HDAC, and Hh.  Curr Treat Options Oncol. 2010;  11 (1–2) 36-44
  • 127 Raleigh Z T. A biopsychosocial perspective on the experience of lung cancer.  J Psychosoc Oncol. 2010;  28 (1) 116-125
  • 128 Gorlova O Y, Weng S F, Zhang Y, Amos C I, Spitz M R. Aggregation of cancer among relatives of never-smoking lung cancer patients.  Int J Cancer. 2007;  121 (1) 111-118
  • 129 Broderick P, Wang Y, Vijayakrishnan J et al.. Deciphering the impact of common genetic variation on lung cancer risk: a genome-wide association study.  Cancer Res. 2009;  69 (16) 6633-6641
  • 130 Bailey-Wilson J E, Amos C I, Pinney S M et al.. A major lung cancer susceptibility locus maps to chromosome 6q23-25.  Am J Hum Genet. 2004;  75 (3) 460-474
  • 131 Amos C I, Pinney S M, Li Y et al.. A susceptibility locus on chromosome 6q greatly increases lung cancer risk among light and never smokers.  Cancer Res. 2010;  70 (6) 2359-2367
  • 132 You M, Wang D, Liu P et al.. Fine mapping of chromosome 6q23-25 region in familial lung cancer families reveals RGS17 as a likely candidate gene.  Clin Cancer Res. 2009;  15 (8) 2666-2674
  • 133 Wang M, Vikis H G, Wang Y et al.. Identification of a novel tumor suppressor gene p34 on human chromosome 6q25.1  Cancer Res. 2007;  67 (1) 93-99
  • 134 Amos C I, Wu X, Broderick P et al.. Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1  Nat Genet. 2008;  40 (5) 616-622
  • 135 Hung R J, McKay J D, Gaborieau V et al.. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25.  Nature. 2008;  452 (7187) 633-637
  • 136 Liu P, Vikis H G, Wang D et al.. Familial aggregation of common sequence variants on 15q24-25.1 in lung cancer.  J Natl Cancer Inst. 2008;  100 (18) 1326-1330
  • 137 McKay J D, Hung R J, Gaborieau V EPIC Study et al. Lung cancer susceptibility locus at 5p15.33.  Nat Genet. 2008;  40 (12) 1404-1406
  • 138 Rafnar T, Sulem P, Stacey S N et al.. Sequence variants at the TERT-CLPTM1L locus associate with many cancer types.  Nat Genet. 2009;  41 (2) 221-227
  • 139 Spitz M R, Amos C I, Dong Q, Lin J, Wu X. The CHRNA5-A3 region on chromosome 15q24-25.1 is a risk factor both for nicotine dependence and for lung cancer.  J Natl Cancer Inst. 2008;  100 (21) 1552-1556
  • 140 Thorgeirsson T E, Geller F, Sulem P et al.. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease.  Nature. 2008;  452 (7187) 638-642
  • 141 Wang Y, Broderick P, Webb E et al.. Common 5p15.33 and 6p21.33 variants influence lung cancer risk.  Nat Genet. 2008;  40 (12) 1407-1409
  • 142 Yang P, Li Y, Jiang R et al.. A rigorous and comprehensive validation: common genetic variations and lung cancer.  Cancer Epidemiol Biomarkers Prev. 2010;  19 (1) 240-244
  • 143 Li Y, Sheu C C, Ye Y et al.. Genetic variants and risk of lung cancer in never smokers: a genome-wide association study.  Lancet Oncol. 2010;  11 (4) 321-330
  • 144 Landi M T, Chatterjee N, Caporaso N E et al.. GPC5 rs2352028 variant and risk of lung cancer in never smokers.  Lancet Oncol. 2010;  11 (8) 714-716
  • 145 Yang P, Jen J, Li Y et al.. Lancet Oncol.  2010;  11 716, authors' reply
  • 146 Veugelers M, Vermeesch J, Reekmans G, Steinfeld R, Marynen P, David G. Characterization of glypican-5 and chromosomal localization of human GPC5, a new member of the glypican gene family.  Genomics. 1997;  40 (1) 24-30
  • 147 Blackhall F H, Merry C L, Davies E J, Jayson G C. Heparan sulfate proteoglycans and cancer.  Br J Cancer. 2001;  85 (8) 1094-1098
  • 148 Yang P, Ebbert J O, Sun Z, Weinshilboum R M. Role of the glutathione metabolic pathway in lung cancer treatment and prognosis: a review.  J Clin Oncol. 2006;  24 (11) 1761-1769
  • 149 Kiyohara C, Wakai K, Mikami H, Sido K, Ando M, Ohno Y. Risk modification by CYP1A1 and GSTM1 polymorphisms in the association of environmental tobacco smoke and lung cancer: a case-control study in Japanese nonsmoking women.  Int J Cancer. 2003;  107 (1) 139-144
  • 150 Bennett W P, Alavanja M C, Blomeke B et al.. Environmental tobacco smoke, genetic susceptibility, and risk of lung cancer in never-smoking women.  J Natl Cancer Inst. 1999;  91 (23) 2009-2014
  • 151 Weinberg C R, Sandler D P. Gene-by-environment interaction for passive smoking and glutathione S-transferase M1?.  J Natl Cancer Inst. 1999;  91 (23) 1985-1986
  • 152 Nyberg F, Hou S M, Hemminki K, Lambert B, Pershagen G. Glutathione S-transferase mu1 and N-acetyltransferase 2 genetic polymorphisms and exposure to tobacco smoke in nonsmoking and smoking lung cancer patients and population controls.  Cancer Epidemiol Biomarkers Prev. 1998;  7 (10) 875-883
  • 153 Zhou W, Liu G, Miller D P et al.. Polymorphisms in the DNA repair genes XRCC1 and ERCC2, smoking, and lung cancer risk.  Cancer Epidemiol Biomarkers Prev. 2003;  12 (4) 359-365
  • 154 Yin J, Li J, Ma Y, Guo L, Wang H, Vogel U. The DNA repair gene ERCC2/XPD polymorphism Arg 156Arg (A22541C) and risk of lung cancer in a Chinese population.  Cancer Lett. 2005;  223 (2) 219-226
  • 155 Cohet C, Borel S, Nyberg F et al.. Exon 5 polymorphisms in the O6-alkylguanine DNA alkyltransferase gene and lung cancer risk in non-smokers exposed to second-hand smoke.  Cancer Epidemiol Biomarkers Prev. 2004;  13 (2) 320-323
  • 156 Vogel U, Christensen J, Wallin H et al.. Polymorphisms in genes involved in the inflammatory response and interaction with NSAID use or smoking in relation to lung cancer risk in a prospective study.  Mutat Res. 2008;  639 (1-2) 89-100
  • 157 Olivo-Marston S E, Yang P, Mechanic L E et al.. Childhood exposure to secondhand smoke and functional mannose binding lectin polymorphisms are associated with increased lung cancer risk.  Cancer Epidemiol Biomarkers Prev. 2009;  18 (12) 3375-3383
  • 158 Shen M, Vermeulen R, Rajaraman P et al.. Polymorphisms in innate immunity genes and lung cancer risk in Xuanwei, China.  Environ Mol Mutagen. 2009;  50 (4) 285-290
  • 159 Lee K M, Shen M, Chapman R S et al.. Polymorphisms in immunoregulatory genes, smoky coal exposure and lung cancer risk in Xuan Wei, China.  Carcinogenesis. 2007;  28 (7) 1437-1441
  • 160 Wang L I, Neuberg D, Christiani D C. Asbestos exposure, manganese superoxide dismutase (MnSOD) genotype, and lung cancer risk.  J Occup Environ Med. 2004;  46 (6) 556-564
  • 161 Senn O, Russi E W, Imboden M, Probst-Hensch N M. alpha1-Antitrypsin deficiency and lung disease: risk modification by occupational and environmental inhalants.  Eur Respir J. 2005;  26 (5) 909-917

Ping YangM.D. 

Department of Health Sciences Research, College of Medicine

Mayo Clinic, 200 First St. SW, Rochester, MN 55905

Email: yang.ping@mayo.edu

    >