Pharmacopsychiatry 2011; 44: S9-S14
DOI: 10.1055/s-0031-1271703
Original Paper

© Georg Thieme Verlag KG Stuttgart · New York

The Aims of Systems Biology: between Molecules and Organisms

D. Noble1
  • 1Department of Physiology, Anatomy and Genetics, Oxford, UK
Further Information

Publication History

Publication Date:
04 May 2011 (online)

Abstract

The systems approach to biology has a long history. Its recent rapid resurgence at the turn of the century reflects the problems encountered in interpreting the sequencing of the genome and the failure of that immense achievement to provide rapid and direct solutions to major multi-factorial diseases. This paper argues that systems biology is necessarily multilevel and that there is no privileged level of causality in biological systems. It is an approach rather than a separate discipline. Functionality arises from biological networks that interact with the genome, the environment and the phenotype. This view of biology is very different from the gene-centred views of neo-Darwinism and molecular biology. In neuroscience, the systems approach leads naturally to 2 important conclusions: first, that the idea of ‘programs’ in the brain is confusing, and second, that the self is better interpreted as a process than as an object.

References

  • 1 Atlan H, Koppel M. The Cellular Computer DNA: Program or Data?.  Bulletin of Mathematical Biology. 1990;  52 335-348
  • 2 Auffray C, Noble D. Conceptual and experimental origins of integrative systems biology in William Harvey's masterpiece on the movement of the heart and the blood in animals.  International Journal of Molecular Sciences. 2009;  10 1658-1669
  • 3 Auffray C, Nottale L. Scale relativity theory and integrative systems biology 1. Founding principles and scale laws.  Progress in Biophysics and Molecular Biology. 2008;  97 79-114
  • 4 Bassingthwaighte JB, Hunter PJ, Noble D. The Cardiac Physiome: perspectives for the future.  Experimental Physiology. 2009;  94 597-605
  • 5 Bernard C. Introduction à l'étude de la médecine expérimentale.  Paris: Flammarion – for 1984 reprint, 1865, 1984
  • 6 Beurton PJ, Falk R, Rheinberger H-J. The Concept of the Gene in Development and Evolution: Historical and Epistemological Perspectives.. Cambridge: Cambridge University Press; 2008
  • 7 Crick FHC. The Astonishing Hypothesis: The Scientific Search for the Soul.. London: Simon and Schuster; 1994
  • 8 Crick FHC. Central Dogma of Molecular Biology.  Nature. 1970;  227 561-563
  • 9 Davidson EH. The Regulatory Genome: Gene Regulatory Networks In Development And Evolution: Academic Press 2006; 
  • 10 Davies J. Regulation, necessity, and the misinterpretation of knockouts.  Bioessays. 2009;  31 826-830
  • 11 Dawkins R. The Selfish Gene.. Oxford: OUP; 1976, 2006
  • 12 Elwes RHM. The chief works of Benedict de Spinoza.. New York: Dover; 1951
  • 13 Feytmans E, Noble D, Peitsch M. Genome size and numbers of biological functions.  Transactions on Computational Systems Biology. 2005;  1 44-49
  • 14 Gluckman P, Hanson M. The Fetal Matrix. Evolution, Development and Disease.. Cambridge: Cambridge University Press; 2004
  • 15 Henderson SA, Goldhaber JI, So JM. et al . Functional adult myocardium in the absence of Na+-Ca2+ exchange: cardiac-specific knockout of NCX1.  Circulation Research. 2004;  95 604-611
  • 16 Hillenmeyer ME, Fung E, Wildenhain J. et al . The chemical genomic portrait of yeast: uncovering a phenotype for all genes.  Science. 2008;  320 362-365
  • 17 Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve.  Journal of Physiology. 1952;  117 500-544
  • 18 Hunter PJ, Borg TK. Integration from Proteins to Organs: The Physiome Project.  Nature Reviews Molecular Cell Biology. 2003;  4 237-243
  • 19 Jablonka E, Lamb M. Evolution in Four Dimensions.. Boston: MIT Press; 2005
  • 20 Jacob F. The Possible and the Actual.. New York: Pantheon Books; 1982
  • 21 Keller EF. The Century of the Gene.. Cambridge, Mass.: Harvard University Press; 2000
  • 22 Kirschner M. The meaning of Systems Biology.  Cell. 2005;  121 503-504
  • 23 Kohl P, Crampin E, Quinn TA. et al . Systems Biology: an approach.  Clinical Pharmacology and Therapeutics. 2010;  88 25-33
  • 24 Kohl P, Noble D. Systems Biology and the Virtual Physiological Human.  Molecular Systems Biology. 2009;  5 292, 291-296
  • 25 Maurel M-C, Kanellopoulos-Langevin C. Heredity – Venturing beyond Genetics.  Biology of Reproduction. 2008;  79 2-8
  • 26 Maynard Smith J, Szathmáry E. The major transitions in evolution.. Oxford: Oxford University Press; 1995
  • 27 McClintock B. The significance of responses of the genome to challenge.  Science. 1984;  226 792-801
  • 28 Noble D. Biophysics and Systems Biology.  Philosophical Transactions of the Royal Society A. 2010;  368 1125-1139
  • 29 Noble D. Cardiac action and pacemaker potentials based on the Hodgkin-Huxley equations.  Nature. 1960;  188 495-497
  • 30 Noble D. Claude Bernard, the first Systems Biologist, and the future of Physiology.  Experimental Physiology. 2008;  93 16-26
  • 31 Noble D. Differential and integral views of genetics in computational systems biology.  Journal of the Royal Society Interface Focus. 2011;  1 7-15
  • 32 Noble D. Editorial.  Journal of the Royal Society Interface Focus. 2011;  1 1-2
  • 33 Noble D. From the Hodgkin-Huxley axon to the virtual heart.  Journal of Physiology. 2007;  580 15-22
  • 34 Noble D. Genes and Causation.  Philosophical Transactions of the Royal Society A. 2008;  366 3001-3015
  • 35 Noble D. The Music of Life.. Oxford: OUP; 2006
  • 36 Noble D. Neo-Darwinism, the Modern Synthesis, and Selfish Genes: are they of use in physiology?.  J Physiol 2011;  589 1007-1015
  • 37 Noble D, Sarai N, Noble PJ. et al . Resistance of Cardiac Cells to NCX Knockout: A Model Study.  Annals of the New York Academy of Sciences. 2007;  1099 306-309
  • 38 Nottale L. Fractal Space-Time and Microphysics: Towards a Theory of Scale Relativity. Singapore: World Scientific.  1993; 
  • 39 Nottale L. La relativité dans tous ses états. Du mouvements aux changements d'échelle.. Paris: Hachette; 2000
  • 40 Nottale L, Auffray C. Scale relativity and integrative systems biology 2. Macroscopic quantum-type mechanics.  Progress in Biophysics and Molecular Biology. 2008;  97 115-157
  • 41 Okasha S. Evolution and the levels of Selection.. Oxford: OUP; 2006
  • 42 Schrödinger E. What is Life?. Cambridge: Cambridge University Press; 1944
  • 43 Shapiro JA, Letting E. coli teach me about genome engineering.  Genetics. 2009;  183 1205-1214
  • 44 Shapiro JA. Revisiting the Central Dogma in the 21st Century.  Annals of the New York Academy of Sciences. 2009;  1178 6-28
  • 45 Sulston J, Ferry G. The Common Thread.. London: Bantam Press; 2002
  • 46 Sun YH, Chen SP, Wang YP. et al . Cytoplasmic Impact on Cross-Genus Cloned Fish Derived from Transgenic Common Carp (Cyprinus carpio) Nuclei and Goldfish (Carassius auratus) Enucleated Eggs.  Biology of Reproduction. 2005;  72 510-515
  • 47 Venter C. A life decoded.. London: Allen Lane. Penguin books; 2007
  • 48 Young JZ. A Model of the Brain.. Oxford: OUP; 1964

Correspondence

Prof. Dr. D. Noble

Department of Physiology,

Anatomy and Genetics

Parks Road

Oxford, OX1 3PT

UK

Email: Denis.noble@dpag.ox.ac.uk