Subscribe to RSS
DOI: 10.1055/s-0030-1261167
Cascade Radical Reaction Induced by Polarity-Mismatched Perfluoroalkylation
Publication History
Publication Date:
10 August 2011 (online)
Abstract
Cascade radical addition-cyclization-trapping reaction proceeded via the unfavorable polarity-mismatched addition of electrophilic perfluoroalkyl radicals to electron-deficient acceptors.
Key word
radical - fluoro - cyclization - enantioselective - cascade
- For general information details for radical reactions, see:
-
1a
Renaud P.Gerster M. Angew. Chem. Int. Ed. 1998, 37: 2562 -
1b
Sibi MP.Porter NA. Acc. Chem. Res. 1999, 32: 163 -
1c
Radicals
in Organic Synthesis
Vol. 1:
Renaud P.Sibi MP. Wiley-VCH; Weinheim: 2001. -
1d
Radicals
in Organic Synthesis
Vol. 2:
Renaud P.Sibi MP. Wiley-VCH; Weinheim: 2001. -
1e
Bar G.Parsons AF. Chem. Soc. Rev. 2003, 32: 251 -
1f
Sibi MP.Manyem S.Zimmerman J. Chem. Rev. 2003, 103: 3263 -
1g
Tojino M.Ryu I. Multicomponent ReactionsZhu J.Bienayme H. Wiley-VCH; Weinheim: . -
1h
Zimmerman J.Sibi MP. Top. Curr. Chem. 2006, 263: 107 -
1i
Godineau E.Landais Y. Chem. Eur. J. 2009, 15: 3044 -
1j
Rowlands GJ. Tetrahedron 2009, 65: 8603 -
1k
Rowlands GJ. Tetrahedron 2010, 66: 1593 -
2a
Miyabe H.Takemoto Y. Chem. Eur. J. 2007, 13: 7280 -
2b
Yoshioka E.Kohtani S.Miyabe H. Heterocycles 2009, 79: 229 -
3a
Nishida M.Hayashi H.Nishida A.Kawahara N. Chem. Commun. 1996, 579 -
3b
Hiroi K.Ishii M. Tetrahedron Lett. 2000, 41: 7071 -
4a
Yang D.Gu S.Yan Y.-L.Zhu N.-Y.Cheung K.-K. J. Am. Chem. Soc. 2001, 123: 8612 -
4b
Yang D.Gu S.Yan Y.-L.Zhao H.-W.Zhu N.-Y. Angew. Chem. Int. Ed. 2002, 41: 3014 -
4c
Yang D.Zheng B.-F.Gao Q.Gu S.Zhu N.-Y. Angew. Chem. Int. Ed. 2006, 45: 255 -
5a
Curran DP.Liu W.Chen CH.-T. J. Am. Chem. Soc. 1999, 121: 11012 -
5b
Bruch A.Ambrosius A.Fröhlich R.Studer A.Guthrie DB.Zhang H.Curran DP. J. Am. Chem. Soc. 2010, 132: 11452 -
6a
Aechtner T.Dressel M.Bach T. Angew. Chem. Int. Ed. 2004, 43: 5849 -
6b
Bauer A.Westkämper F.Grimme S.Bach T. Nature (London) 2005, 436: 1139 -
6c
Breitenlechner S.Bach T. Angew. Chem. Int. Ed. 2008, 47: 7957 - 7
Gansäuer A.Shi L.Otte M. J. Am. Chem. Soc. 2010, 132: 11858 -
8a
Beeson TD.Mastracchio A.Hong J.-B.Ashton K.MacMillan DWC. Science 2007, 316: 582 -
8b
Jang H.-Y.Hong J.-B.MacMillan DWC. J. Am. Chem. Soc. 2007, 129: 7004 -
8c
Conrad JC.Kong J.Laforteza BN.MacMillan DWC. J. Am. Chem. Soc. 2009, 131: 11640 -
8d
Rendler S.MacMillan DWC. J. Am. Chem. Soc. 2010, 132: 5027 -
9a
Nicolaou KC.Reingruber R.Sarlah D.Bräse S.
J. Am. Chem. Soc. 2009, 131: 2086 -
9b
Nicolaou KC.Reingruber R.Sarlah D.Bräse S. J. Am. Chem. Soc. 2009, 131: 6640 - We have reported the strategy using hydroxamate ester as a coordination tether with a chiral Lewis acid. See:
-
10a
Miyabe H.Asada R.Toyoda A.Takemoto Y. Angew. Chem. Int. Ed. 2006, 45: 5863 -
10b
Miyabe H.Toyoda A.Takemoto Y. Synlett 2007, 1885 -
11a
Yajima T.Nagano H. Org. Lett. 2007, 9: 2513 -
11b
Nagib DA.Scott ME.MacMillan DWC. J. Am. Chem. Soc. 2009, 131: 10875 - 12 For a review on perfluoroalkyl radicals,
see:
Dolbier WR. Chem. Rev. 1996, 96: 1557 -
13a
Miura K.Taniguchi M.Nozaki K.Oshima K.Utimoto K. Tetrahedron Lett. 1990, 31: 6391 -
13b
Avila DV.Ingold KU.Lusztyk J.Dolbier WR.Pan H.-Q.Muir M. J. Am. Chem. Soc. 1994, 116: 99 -
13c
Iseki K.Asada D.Takahashi M.Nagai T.Kobayashi Y. Tetrahedron: Asymmetry 1996, 7: 1205 -
13d
Tsuchii K.Ueta Y.Kamada N.Einaga Y.Nomoto A.Ogawa A. Tetrahedron Lett. 2005, 46: 7275 -
13e
Cao H.-P.Xiao J.-C.Chen Q.-Y. J. Fluorine Chem. 2006, 127: 1079 -
13f
Mikami K.Tomita Y.Ichikawa Y.Amikura K.Itoh Y. Org. Lett. 2006, 8: 4671 -
13g
Uenoyama Y.Fukuyama T.Morimoto K.Nobuta O.Nagai H.Ryu I. Helv. Chim. Acta 2006, 89: 2483 -
13h
Petrik V.Cahard D. Tetrahedron Lett. 2007, 48: 3327 -
13i
Tomita Y.Ichikawa Y.Itoh Y.Kawada K.Mikami K. Tetrahedron Lett. 2007, 48: 8922 -
13j
Ma Z.Ma S. Tetrahedron 2008, 64: 6500 -
13k
Li Y.Li H.Hu J. Tetrahedron 2009, 65: 478 -
14a
Qiu Z.-M.Burton DJ. J. Org. Chem. 1995, 60: 3465 -
14b
Yajima T.Nagano H.Saito C. Tetrahedron Lett. 2003, 44: 7027 -
14c
Tonoi T.Nishikawa A.Yajima T.Nagano H.Mikami K. Eur. J. Org. Chem. 2008, 1331 -
14d
Ueda M.Iwasada E.Miyabe H.Miyata O.Naito T. Synthesis 2010, 1999 - 16 In general, the copper(II) Lewis
acids are unsuitable for radical reactions due to extinction of
radical species. For a successful example of radical reaction using
copper(II) Lewis acids, see:
Friestad GK.Shen Y.Ruggles EL. Angew. Chem. Int. Ed. 2003, 42: 5061 - 17
Smart BE. In Chemistry of Organic Fluorine Compounds II, ACS Monograph 187Hudlicky M.Pavlath SE. American Chemical Society; Washington DC: 1995. p.979-1010 - For studies on reactivity and structure of perfluoroalkyl radicals, see:
-
18a
Krusic PJ.Bingham RC. J. Am. Chem. Soc. 1976, 98: 230 -
18b
Bernardi F.Cherry W.Shaik S.Epiotis ND. J. Am. Chem. Soc. 1978, 100: 1352 -
18c
Dewar MJS.Olivella S. J. Am. Chem. Soc. 1978, 100: 5290 -
18d
Wong MW.Pross A.Radom L. J. Am. Chem. Soc. 1994, 116: 11938 - 20
Avilla DV.Ingold KU.Lusztyk J.Dolbier WR.Pan H.-Q.Muir M. J. Am. Chem. Soc. 1994, 116: 99 -
22a
Sibi MP.Yang Y.-H. Synlett 2008, 83 -
22b
Evans DA.Kozlowski MC.Tedrow JS. Tetrahedron Lett. 1996, 37: 7481
References and notes
The structures of cis-2a,b, trans-2a,b and 3a,b were confirmed by HMQC, HMBC, and NOESY experiments.
19The electrophilicity of perfluoroalkyl radicals followed the order 1˚ < 2˚ < 3˚; see ref. 12.
21The absolute configuration at the stereocenter of cis-2a-d was assumed by similarity between the present reaction and the previously reported study. See ref. 10a.
23Both cis-9 and trans-9 were respectively obtained as two diastereomers concerning the newly generated stereocenter at iodinated carbon.
24
General Procedure
for Enantioselective Radical Reaction: A solution of substrate 1 or 8 (100 mg
or 106 mg, 0.43 mmol), Zn(OTf)2 (156 mg, 0.43 mmol) and
ligand 7 (153 mg, 0.43 mmol) in CH2Cl2 (4.3
mL) was stirred for 1 h under Ar atmosphere at 20 ˚C. To
the reaction mixture were added RI (2.15 mmol) and Et3B
(1.05 M in hexane, 2.05 mL, 2.15 mmol) at -78 ˚C.
After being stirred at the same temperature for 1-5 d,
the reaction mixture was diluted with sat. NaHCO3 and
then extracted with CH2Cl2. The organic phase
was dried over Na2SO4 and concentrated at
reduced pressure. The residue was roughly purified by preparative TLC
(hexane-EtOAc, 3:1) to give the mixture of products. The
ratio of products was determined by ¹H NMR analysis of
the mixture. Second purification of the mixture by preparative TLC
(benzene-EtOAc, 10:1 or hexane-EtOAc, 6:1, 2-fold
development) afforded the isolated products.
Representative Products: cis
-2a:
colorless crystals; mp 99-99.5 ˚C (hexane). IR
(KBr): 2948, 1717, 1458 cm-¹. ¹H NMR
(CDCl3): δ = 7.38-7.50 (m,
5 H), 5.04 (d, J = 11.0 Hz, 1
H), 5.02 (d, J = 11.0 Hz, 1
H), 3.50 (dd, J = 9.2, 6.6 Hz,
1 H), 3.19-3.30 (m, 2 H), 2.73 (t, J = 11.4
Hz, 1 H), 2.39-2.58 (m, 2 H), 2.26 (br dd, J = 37.0, 16.0 Hz, 1 H), 1.32
(d, J = 1.6 Hz, 3 H). ¹³C
NMR (CDCl3): δ = 170.8, 134.7, 129.6,
129.3, 128.7, 118.3 (tt, J = 257,
31 Hz), 117.5 (qt, J = 289,
34 Hz), 108.4 (tsext, J = 265,
36 Hz), 76.9, 51.1, 44.5, 44.2, 31.0 (t, J = 21
Hz), 22.2, 4.1. ¹9F NMR (CDCl3): δ = -80.6
(t, J = 19.5 Hz, 3 F), -106.2
(dm, J = 273 Hz, 1 F), -116.0
(dm, J = 273 Hz, 1 F), -128.3
(br s, 2 F). MS (EI+): m/z = 528 (25)
[M + H+],
91 (100). HRMS (EI+): m/z [M + H+] calcd
for C17H18F7INO2: 528.0270;
found: 528.0260. Anal. Calcd for C17H17F7INO2:
C, 38.73; H, 3.25; N, 2.66. Found: C, 38.74; H, 3.22; N, 2.60. HPLC
(Chiralcel AD-H, hexane-2-propanol, 95:5; flow: 1.0 mL/min,
l = 254 nm); t
R (major) = 6.7
min, t
R (minor) = 8.9
min. A sample of 87% ee by HPLC analysis gave [α]²4
D +28.3
(c = 0.40, CHCl3). 3a: colorless oil. IR (KBr): 2968, 2932,
1714, 1455 cm-¹. ¹H
NMR (CDCl3): δ = 7.34-7.47
(m, 5 H), 5.09 (d, J = 11.0
Hz, 1 H), 5.04 (d, J = 11.0
Hz, 1 H), 3.48 (t, J = 8.5 Hz,
1 H), 3.37 (dd, J = 8.5, 1.8
Hz, 1 H), 3.23 (d, J = 11.0
Hz, 1 H), 3.05 (d, J = 11.0
Hz, 1 H), 2.45 (m, 1 H), 2.26-2.42 (br m, 2 H), 1.30 (s, 3
H). ¹³C NMR (CDCl3): δ = 170.1,
134.7, 129.5, 129.1, 128.6, 117.6 (qt, J = 288,
34 Hz), 117.4 (tt, J = 256,
32 Hz), 108.4 (tsext, J = 265,
38 Hz), 77.2, 50.1 (d, J = 5
Hz), 44.0, 33.9, 28.1 (t, J = 21
Hz), 25.0, 6.4. ¹9F NMR (CDCl3): δ =
-80.9
(t, J = 9 Hz, 3 F), -113.7
(dm, J = 273 Hz, 1 F), -116.0 (dm, J = 273 Hz, 1 F), -127.8
(dd, J = 290, 5 Hz, 1 F), -128.2 (dd, J = 290, 5 Hz, 1 F). HRMS (ESI): m/z [M + H+] calcd for
C17H18F7INO2: 528.0270;
found: 528.0269.