Synlett 2011(14): 2085-2089  
DOI: 10.1055/s-0030-1261167
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Cascade Radical Reaction Induced by Polarity-Mismatched Perfluoroalkylation

Eito Yoshioka, Kentefu, Xin Wang, Shigeru Kohtani, Hideto Miyabe*
School of Pharmacy, Hyogo University of Health Sciences, Minatojima, Kobe 650-8530, Japan
Fax: +81(78)3042794; e-Mail: miyabe@huhs.ac.jp;
Further Information

Publication History

Received 27 May 2011
Publication Date:
10 August 2011 (online)

Abstract

Cascade radical addition-cyclization-trapping reaction proceeded via the unfavorable polarity-mismatched addition of electrophilic perfluoroalkyl radicals to electron-deficient acceptors.

    References and notes

  • For general information details for radical reactions, see:
  • 1a Renaud P. Gerster M. Angew. Chem. Int. Ed.  1998,  37:  2562 
  • 1b Sibi MP. Porter NA. Acc. Chem. Res.  1999,  32:  163 
  • 1c Radicals in Organic Synthesis   Vol. 1:  Renaud P. Sibi MP. Wiley-VCH; Weinheim: 2001. 
  • 1d Radicals in Organic Synthesis   Vol. 2:  Renaud P. Sibi MP. Wiley-VCH; Weinheim: 2001. 
  • 1e Bar G. Parsons AF. Chem. Soc. Rev.  2003,  32:  251 
  • 1f Sibi MP. Manyem S. Zimmerman J. Chem. Rev.  2003,  103:  3263 
  • 1g Tojino M. Ryu I. Multicomponent Reactions   Zhu J. Bienayme H. Wiley-VCH; Weinheim: . 
  • 1h Zimmerman J. Sibi MP. Top. Curr. Chem.  2006,  263:  107 
  • 1i Godineau E. Landais Y. Chem. Eur. J.  2009,  15:  3044 
  • 1j Rowlands GJ. Tetrahedron  2009,  65:  8603 
  • 1k Rowlands GJ. Tetrahedron  2010,  66:  1593 
  • 2a Miyabe H. Takemoto Y. Chem. Eur. J.  2007,  13:  7280 
  • 2b Yoshioka E. Kohtani S. Miyabe H. Heterocycles  2009,  79:  229 
  • 3a Nishida M. Hayashi H. Nishida A. Kawahara N. Chem. Commun.  1996,  579 
  • 3b Hiroi K. Ishii M. Tetrahedron Lett.  2000,  41:  7071 
  • 4a Yang D. Gu S. Yan Y.-L. Zhu N.-Y. Cheung K.-K. J. Am. Chem. Soc.  2001,  123:  8612 
  • 4b Yang D. Gu S. Yan Y.-L. Zhao H.-W. Zhu N.-Y. Angew. Chem. Int. Ed.  2002,  41:  3014 
  • 4c Yang D. Zheng B.-F. Gao Q. Gu S. Zhu N.-Y. Angew. Chem. Int. Ed.  2006,  45:  255 
  • 5a Curran DP. Liu W. Chen CH.-T. J. Am. Chem. Soc.  1999,  121:  11012 
  • 5b Bruch A. Ambrosius A. Fröhlich R. Studer A. Guthrie DB. Zhang H. Curran DP. J. Am. Chem. Soc.  2010,  132:  11452 
  • 6a Aechtner T. Dressel M. Bach T. Angew. Chem. Int. Ed.  2004,  43:  5849 
  • 6b Bauer A. Westkämper F. Grimme S. Bach T. Nature (London)  2005,  436:  1139 
  • 6c Breitenlechner S. Bach T. Angew. Chem. Int. Ed.  2008,  47:  7957 
  • 7 Gansäuer A. Shi L. Otte M. J. Am. Chem. Soc.  2010,  132:  11858 
  • 8a Beeson TD. Mastracchio A. Hong J.-B. Ashton K. MacMillan DWC. Science  2007,  316:  582 
  • 8b Jang H.-Y. Hong J.-B. MacMillan DWC. J. Am. Chem. Soc.  2007,  129:  7004 
  • 8c Conrad JC. Kong J. Laforteza BN. MacMillan DWC. J. Am. Chem. Soc.  2009,  131:  11640 
  • 8d Rendler S. MacMillan DWC. J. Am. Chem. Soc.  2010,  132:  5027 
  • 9a Nicolaou KC. Reingruber R. Sarlah D. Bräse S.
    J. Am. Chem. Soc.  2009,  131:  2086 
  • 9b Nicolaou KC. Reingruber R. Sarlah D. Bräse S. J. Am. Chem. Soc.  2009,  131:  6640 
  • We have reported the strategy using hydroxamate ester as a coordination tether with a chiral Lewis acid. See:
  • 10a Miyabe H. Asada R. Toyoda A. Takemoto Y. Angew. Chem. Int. Ed.  2006,  45:  5863 
  • 10b Miyabe H. Toyoda A. Takemoto Y. Synlett  2007,  1885 
  • 11a Yajima T. Nagano H. Org. Lett.  2007,  9:  2513 
  • 11b Nagib DA. Scott ME. MacMillan DWC. J. Am. Chem. Soc.  2009,  131:  10875 
  • 12 For a review on perfluoroalkyl radicals, see: Dolbier WR. Chem. Rev.  1996,  96:  1557 
  • 13a Miura K. Taniguchi M. Nozaki K. Oshima K. Utimoto K. Tetrahedron Lett.  1990,  31:  6391 
  • 13b Avila DV. Ingold KU. Lusztyk J. Dolbier WR. Pan H.-Q. Muir M. J. Am. Chem. Soc.  1994,  116:  99 
  • 13c Iseki K. Asada D. Takahashi M. Nagai T. Kobayashi Y. Tetrahedron: Asymmetry  1996,  7:  1205 
  • 13d Tsuchii K. Ueta Y. Kamada N. Einaga Y. Nomoto A. Ogawa A. Tetrahedron Lett.  2005,  46:  7275 
  • 13e Cao H.-P. Xiao J.-C. Chen Q.-Y. J. Fluorine Chem.  2006,  127:  1079 
  • 13f Mikami K. Tomita Y. Ichikawa Y. Amikura K. Itoh Y. Org. Lett.  2006,  8:  4671 
  • 13g Uenoyama Y. Fukuyama T. Morimoto K. Nobuta O. Nagai H. Ryu I. Helv. Chim. Acta  2006,  89:  2483 
  • 13h Petrik V. Cahard D. Tetrahedron Lett.  2007,  48:  3327 
  • 13i Tomita Y. Ichikawa Y. Itoh Y. Kawada K. Mikami K. Tetrahedron Lett.  2007,  48:  8922 
  • 13j Ma Z. Ma S. Tetrahedron  2008,  64:  6500 
  • 13k Li Y. Li H. Hu J. Tetrahedron  2009,  65:  478 
  • 14a Qiu Z.-M. Burton DJ. J. Org. Chem.  1995,  60:  3465 
  • 14b Yajima T. Nagano H. Saito C. Tetrahedron Lett.  2003,  44:  7027 
  • 14c Tonoi T. Nishikawa A. Yajima T. Nagano H. Mikami K. Eur. J. Org. Chem.  2008,  1331 
  • 14d Ueda M. Iwasada E. Miyabe H. Miyata O. Naito T. Synthesis  2010,  1999 
  • 16 In general, the copper(II) Lewis acids are unsuitable for radical reactions due to extinction of radical species. For a successful example of radical reaction using copper(II) Lewis acids, see: Friestad GK. Shen Y. Ruggles EL. Angew. Chem. Int. Ed.  2003,  42:  5061 
  • 17 Smart BE. In Chemistry of Organic Fluorine Compounds II, ACS Monograph 187   Hudlicky M. Pavlath SE. American Chemical Society; Washington DC: 1995.  p.979-1010  
  • For studies on reactivity and structure of perfluoroalkyl radicals, see:
  • 18a Krusic PJ. Bingham RC. J. Am. Chem. Soc.  1976,  98:  230 
  • 18b Bernardi F. Cherry W. Shaik S. Epiotis ND. J. Am. Chem. Soc.  1978,  100:  1352 
  • 18c Dewar MJS. Olivella S. J. Am. Chem. Soc.  1978,  100:  5290 
  • 18d Wong MW. Pross A. Radom L. J. Am. Chem. Soc.  1994,  116:  11938 
  • 20 Avilla DV. Ingold KU. Lusztyk J. Dolbier WR. Pan H.-Q. Muir M. J. Am. Chem. Soc.  1994,  116:  99 
  • 22a Sibi MP. Yang Y.-H. Synlett  2008,  83 
  • 22b Evans DA. Kozlowski MC. Tedrow JS. Tetrahedron Lett.  1996,  37:  7481 
15

The structures of cis-2a,b, trans-2a,b and 3a,b were confirmed by HMQC, HMBC, and NOESY experiments.

19

The electrophilicity of perfluoroalkyl radicals followed the order 1˚ < 2˚ < 3˚; see ref. 12.

21

The absolute configuration at the stereocenter of cis-2a-d was assumed by similarity between the present reaction and the previously reported study. See ref. 10a.

23

Both cis-9 and trans-9 were respectively obtained as two diastereomers concerning the newly generated stereocenter at iodinated carbon.

24

General Procedure for Enantioselective Radical Reaction: A solution of substrate 1 or 8 (100 mg or 106 mg, 0.43 mmol), Zn(OTf)2 (156 mg, 0.43 mmol) and ligand 7 (153 mg, 0.43 mmol) in CH2Cl2 (4.3 mL) was stirred for 1 h under Ar atmosphere at 20 ˚C. To the reaction mixture were added RI (2.15 mmol) and Et3B (1.05 M in hexane, 2.05 mL, 2.15 mmol) at -78 ˚C. After being stirred at the same temperature for 1-5 d, the reaction mixture was diluted with sat. NaHCO3 and then extracted with CH2Cl2. The organic phase was dried over Na2SO4 and concentrated at reduced pressure. The residue was roughly purified by preparative TLC (hexane-EtOAc, 3:1) to give the mixture of products. The ratio of products was determined by ¹H NMR analysis of the mixture. Second purification of the mixture by preparative TLC (benzene-EtOAc, 10:1 or hexane-EtOAc, 6:1, 2-fold development) afforded the isolated products.
Representative Products: cis -2a: colorless crystals; mp 99-99.5 ˚C (hexane). IR (KBr): 2948, 1717, 1458 cm. ¹H NMR (CDCl3): δ = 7.38-7.50 (m, 5 H), 5.04 (d, J = 11.0 Hz, 1 H), 5.02 (d, J = 11.0 Hz, 1 H), 3.50 (dd, J = 9.2, 6.6 Hz, 1 H), 3.19-3.30 (m, 2 H), 2.73 (t, J = 11.4 Hz, 1 H), 2.39-2.58 (m, 2 H), 2.26 (br dd, J = 37.0, 16.0 Hz, 1 H), 1.32 (d, J = 1.6 Hz, 3 H). ¹³C NMR (CDCl3): δ = 170.8, 134.7, 129.6, 129.3, 128.7, 118.3 (tt, J = 257, 31 Hz), 117.5 (qt, J = 289, 34 Hz), 108.4 (tsext, J = 265, 36 Hz), 76.9, 51.1, 44.5, 44.2, 31.0 (t, J = 21 Hz), 22.2, 4.1. ¹9F NMR (CDCl3): δ = -80.6 (t, J = 19.5 Hz, 3 F), -106.2 (dm, J = 273 Hz, 1 F), -116.0 (dm, J = 273 Hz, 1 F), -128.3 (br s, 2 F). MS (EI+): m/z = 528 (25)
[M + H+], 91 (100). HRMS (EI+): m/z [M + H+] calcd for C17H18F7INO2: 528.0270; found: 528.0260. Anal. Calcd for C17H17F7INO2: C, 38.73; H, 3.25; N, 2.66. Found: C, 38.74; H, 3.22; N, 2.60. HPLC (Chiralcel AD-H, hexane-2-propanol, 95:5; flow: 1.0 mL/min, l = 254 nm); t R (major) = 6.7 min, t R (minor) = 8.9 min. A sample of 87% ee by HPLC analysis gave [α]²4 D +28.3 (c = 0.40, CHCl3). 3a: colorless oil. IR (KBr): 2968, 2932, 1714, 1455 cm. ¹H NMR (CDCl3): δ = 7.34-7.47 (m, 5 H), 5.09 (d, J = 11.0 Hz, 1 H), 5.04 (d, J = 11.0 Hz, 1 H), 3.48 (t, J = 8.5 Hz, 1 H), 3.37 (dd, J = 8.5, 1.8 Hz, 1 H), 3.23 (d, J = 11.0 Hz, 1 H), 3.05 (d, J = 11.0 Hz, 1 H), 2.45 (m, 1 H), 2.26-2.42 (br m, 2 H), 1.30 (s, 3 H). ¹³C NMR (CDCl3): δ = 170.1, 134.7, 129.5, 129.1, 128.6, 117.6 (qt, J = 288, 34 Hz), 117.4 (tt, J = 256, 32 Hz), 108.4 (tsext, J = 265, 38 Hz), 77.2, 50.1 (d, J = 5 Hz), 44.0, 33.9, 28.1 (t, J = 21 Hz), 25.0, 6.4. ¹9F NMR (CDCl3): δ =
-80.9 (t, J = 9 Hz, 3 F), -113.7 (dm, J = 273 Hz, 1 F), -116.0 (dm, J = 273 Hz, 1 F), -127.8 (dd, J = 290, 5 Hz, 1 F), -128.2 (dd, J = 290, 5 Hz, 1 F). HRMS (ESI): m/z [M + H+] calcd for C17H18F7INO2: 528.0270; found: 528.0269.