Synlett 2011(17): 2577-2579  
DOI: 10.1055/s-0030-1260330
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

A General Protocol for the Solvent- and Catalyst-Free Synthesis of 2-Styrylquinolines under Focused Microwave Irradiation

Matteo Staderinia, Nieves Cabezasa, Maria Laura Bolognesib, J. Carlos Menéndez*a
a Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain
Fax: +34(91)3941822; e-Mail: josecm@farm.ucm.es;
b Dipartimento di Scienze Farmaceutiche, Universitá di Bologna, via Belmeloro 6, 40126 Bologna, Italy
Further Information

Publication History

Received 10 June 2011
Publication Date:
29 September 2011 (online)

Abstract

Focused microwave irradiation promoted the very efficient synthesis of 2-styrylquinolines by reaction between quinaldines and benzaldehydes or cinnamaldehydes in the presence of acetic anhydride.

    References and Notes

  • For reviews of quinoline-related compounds, see:
  • 1a Michael JP. Nat. Prod. Rep.  2008,  25:  166 
  • 1b Michael JP. Nat. Prod. Rep.  2007,  24:  223 
  • 1c Kouznetsov VV. Vargas Méndez LY. Meléndez Gomez CM. Curr. Org. Chem.  2005,  9:  141 
  • 1d Michael JP. Nat. Prod. Rep.  2004,  21:  650 
  • 1e Michael JP. Nat. Prod. Rep.  2005,  22:  627 
  • 2 Bongarzone S. Bolognesi ML. Curr. Opin. Drug Discovery Dev.  2011,  6:  251 
  • For reviews of the potential of integrase inhibitors as anti-HIV agents, see:
  • 3a Makhija MT. Curr. Med. Chem.  2006,  13:  2429 
  • 3b Pommier Y. Johnson AA. Marchand C. Nat. Rev. Drug Discovery  2005,  4:  236 
  • 3c Andréola ML. De Soultrait VR. Fournier M. Parissi V. Desjobert C. Litvak S. Expert Opin. Ther. Targets  2002,  6:  433 
  • 3d d’Angelo J. Mouscadet J.-F. Desmaële D. Zouhiri F. Leh H. Pathol. Biol.  2001,  49:  237 
  • 4 Raltegravir, an integrase inhibitor, has recently reached the market as an anti-AIDS agent. For a study of its clinical efficacy, see: Steigbigel RT. Cooper DA. Kumar PN. Eron JE. Schechter M. Markowitz M. Loutfy MR. Lennox JL. Gatell JM. Rockstroh JK. Katlama C. Yeni P. Lazzarin A. Clotet B. Zhao J. Chen J. Ryan DM. Rhodes RR. Killar JA. Gilde LR. Strohmaier KM. Meibohm AR. Miller MD. Hazuda DJ. Nessly ML. DiNubile MJ. Isaacs RD. Nguyen B.-Y. Teppler H. N. Engl. J. Med.  2008,  359:  339 
  • 5a Normand-Bayle M. Bénard C. Zouhiri F. Mouscadet J.-F. Leh H. Thomas C.-M. Mbemba G. Desmaële D. d’Angelo J. Bioorg. Med. Chem. Lett.  2005,  15:  4019 
  • 5b Bénard C. Zouhiri F. Normand-Bayle M. Canet M. Desmaële D. Leh H. Mouscadet J.-F. Mbemba G. Thomas C.-M. Bonnenfant S. Le Bret M. d’Angelo J. Bioorg. Med. Chem.  2004,  14:  2473 
  • 5c Mousnier A. Leh H. Mouscadet J.-F. Dargemont C. Mol. Pharmacol.  2004,  66:  783 
  • 5d Polanski J. Zouhiri F. Jeanson L. Desmaële D. d’Angelo J. Mouscadet J.-F. Gieleciak R. Gasteiger J. Le Bret M. J. Med. Chem.  2002,  45:  4647 
  • 5e Yuan H. Parrill AL. Bioorg. Med. Chem.  2002,  10:  4169 
  • 5f Oulali M. Labulais C. Leh H. Gill D. Desmaële D. Mekouar K. Zouhiri F. d’Angelo J. Auclair C. Mouscadet J.-F. Le Bret M. J. Med. Chem.  2002,  43:  1949 
  • 5g d’Angelo J. Mouscadet J.-F. Desmaele D. Zouhiri F. Leh H. Pathol. Biol.  2001,  49:  237 
  • 5h Zouhiri F. Mouscadet J.-F. Mekouar K. Desmaële D. Savouré D. Leh H. Subra F. Le Bret M. Auclair C. d’Angelo J. J. Med. Chem.  2000,  43:  1533 
  • 5i Ouali M. Laboulais C. Leh H. Gill D. Desmaele D. Mekouar K. Zouhiri F. d’Angelo J. Auclair C. Mouscadet J.-F. Le Bret M. J. Med. Chem.  2000,  43:  1949 
  • 5j Mekouar K. Mouscadet J.-F. Desmaële D. Subra F. Leh H. Savouré D. Auclair C. d’Angelo J. J. Med. Chem.  1998,  41:  2846 
  • 6 Bonnenfant S. Thomas CM. Vita C. Subra C. Deprez E. Zouhiri F. Desmaële D. d’Angelo J. Mouscadet J.-F. Leh H. J. Virol.  2004,  78:  5728 
  • 7 Li Q. Min J. Ahn Y.-H. Namm J. Kim EM. Lui R. Kim HY. Ji Y. Wu H. Wisniewski T. Chang Y.-T. ChemBioChem  2007,  8:  1679 
  • 8a Dabiri M. Salehi P. Baghbanzadeh M. Nikcheh MS. Tetrahedron Lett.  2008,  49:  5366 
  • 8b Leonard JT. Roy K. Eur. J. Med. Chem.  2008,  43:  81 
  • 8c Makhija MT. Curr. Med. Chem.  2006,  13:  2429 
  • 8d Bonnenfant S. Thomas C.-M. Vita C. Subra C. Deprez E. Zouhiri F. Desmaele D. d’Angelo J. Mouscadet J.-F. Leh H. J. Virol.  2004,  78:  5728 
  • 8e Yuan HB. Parrill AL. Bioorg. Med. Chem.  2002,  10:  4169 
  • 9 For a discussion, see: Kappe AO. Angew. Chem. Int. Ed.  2004,  43:  6250 
  • 10 Musiol R. Podeszwa B. Finster J. Niedbala H. Polansli J. Monatsh. Chem.  2006,  137:  1211 
  • For the preparation of these starting materials, see:
  • 11a Sridharan V. Avendaño C. Menéndez JC. Tetrahedron  2007,  63:  673 
  • 11b Fedoryak OD. Dore TM. Org. Lett.  2002,  4:  3419 
  • 11c Chen X.-Y. Shi J. Li Y.-M. Wang F.-L. Wu X. Guo Q.-X. Liu L. Org. Lett.  2009,  11:  4426 
12

General Experimental Procedure
The suitable quinaldine derivative (1 mmol) and the corresponding aromatic aldehyde (1 equiv) were suspended in Ac2O (0.5 mL) in a pressure-tight microwave tube containing a stirring bar. The reaction mixture was heated under microwave irradiation for 1 h at 130-180 ˚C, with an irradiation power of 200 W, using a CEM Discover SP microwave reactor. The solvent was removed under reduced pressure to give a black residue that was purified by chroma-tography through a silica column using PE-EtOAc (90:10, v/v) as the mobile phase. Characterization data for three representative compounds are given below. For further characterization data, see the Supporting Information.
( E )-2-(4-Fluorostyryl)-6-methoxyquinoline (3h) Pale yellow solid; mp 138-141 ˚C. IR (neat): νmax = 1592.4, 1509.8, 1231.9, 1164.1, 1030.8, 965.4, 856.2, 837.0 cm. ¹H NMR (250 MHz, CDCl3): δ = 3.96 (s, 3 H), 7.08-7.14 (m, 3 H), 7.33 (d, J = 16.6 Hz, 1 H), 7.39 (dd, J = 9.3, 2.8 Hz, 1 H), 7.58-7.65 (m, 4 H), 8.02 (d, J = 8.9 Hz, 1 H), 8.05 (d, J = 8.4 Hz, 1 H). ¹³C NMR (62.9 MHz, CDCl3): δ = 56.0 (CH3), 105.6 (CH), 116.2 (d, J = 21.7 Hz, 2 CH), 119.2 (CH), 122.9 (CH), 128.7 (C), 129.1 (d, J = 8.1 Hz, 2 CH), 130.9 (CH), 132.5 (CH), 133.2 (C), 133.3 (C), 135.7 (CH), 144.6 (C), 153.9 (C), 158.1 (C), 163.21 (d, J = 248.4 Hz, C). Anal. Calcd for C18H14FNO: C, 77.40; H, 5.05; N, 5.01. Found: C, 77.15; H, 5.01; N, 4.77.
( E )-7-Chloro-2-(4-methoxystyryl)quinolone (3j) White solid; mp 149-151 ˚C. IR (neat): νmax = 1604.2, 1511.3, 1408.0, 1250.8, 1177.9, 1032.8, 970.1, 831.8 cm. ¹H NMR (250 MHz, CDCl3): δ = 3.89 (s, 3 H), 6.98 (d, J = 8.7 Hz, 2 H), 7.23 (d, J = 16.1 Hz, 1 H), 7.46 (dd, J = 8.6, 2.1 Hz, 1 H), 7.61-7.75 (m, 5 H), 8.09-8.13 (m, 2 H). ¹³C NMR (62.9 MHz, CDCl3): δ = 55.8 (CH3), 114.7 (2 CH), 120.0 (CH), 125.9 (C), 126.7 (CH), 127.3 (CH), 128.5 (CH), 129.1 (CH), 129.2 (2 CH), 129.5 (C), 135.2 (CH), 135.9 (C), 136.4 (CH), 149.1 (C), 157.7 (C), 160.7 (C). Anal. Calcd for C18H14ClNO: C, 73.10; H, 4.77; N, 4.74. Found: C, 73.19; H, 4.81; N, 4.86.
6-Chloro-2-[(1 E ,3 E )-4-phenylbuta-1,3-dienyl]quinoline (3m) Yellow solid; mp 105-108 ˚C. IR (neat): νmax = 1590.2, 1485.5, 1070.0, 1001.7, 892.3, 825.7, 751.7 cm. ¹H NMR (250 MHz, CDCl3): δ = 6.87-7.15 (m, 3 H), 7.31-7.43 (m, 3 H), 7.52-7.62 (m, 4 H), 7.65 (dd, J = 9.0, 2.3 Hz, 1 H) 7.78 (d, J = 2.3 Hz, 1 H), 8.01 (d, J = 8.9 Hz, 1 H), 8.04 (d, J = 8.5 Hz, 1 H). ¹³C NMR (62.9 MHz, CDCl3): δ = 120.8 (CH), 126.6 (CH), 127.2 (2 CH), 128.2 (C), 128.7 (CH), 128.8 (CH), 129.2 (2 CH), 131.0 (CH), 131.2 (CH), 132.1 (CH), 132.7 (CH), 135.7 (CH), 135.8 (CH), 136.8 (CH), 137.3 (C), 147.1 (C), 156.6 (C). Anal. Calcd for C19H14ClN: C, 78.21; H, 4.84; N, 4.80. Found: C, 78.45; H, 5.01; N, 5.03.