Synlett 2011(5): 659-662  
DOI: 10.1055/s-0030-1259690
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Rasta Resin-DMAP and its Use as a Recyclable Catalyst for the Addition of Carbon Dioxide to Epoxides

Jinni Lu, Patrick H. Toy*
Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. of China
Fax: +85228571586; e-Mail: phtoy@hku.hk;
Further Information

Publication History

Received 19 December 2010
Publication Date:
25 February 2011 (online)

Abstract

Rasta resin-DMAP, a new heterogeneous polystyrene-based amine, has been synthesized and used as a catalyst in addition reactions of carbon dioxide to epoxides to afford cyclic carbonate products. This new material was found to be a more efficient catalyst than divinyl benzene cross-linked polystyrene-supported DMAP, and was readily recovered and reused without significant loss of catalytic activity.

    References and Notes

  • 1 Lu J. Toy PH. Chem. Rev.  2009,  109:  815 
  • 2 Hodges JC. Harikrishnan LS. Ault-Justus S. J. Comb. Chem.  2000,  2:  80 
  • 3a Lindsley CW. Hodges JC. Filzen GF. Watson BM. Geyer AG. J. Comb. Chem.  2000,  2:  550 
  • 3b McAlpine SR. Lindsley CW. Hodges JC. Leonard DM. Filzen GF. J. Comb. Chem.  2001,  3:  1 
  • 3c Wisnoski DD. Leister WH. Strauss KA. Zhao Z. Lindsley CW. Tetrahedron Lett.  2003,  44:  4321 
  • 3d Fournier D. Pascual S. Montembault V. Haddleton DM. Fontaine L. J. Comb. Chem.  2006,  8:  522 
  • 3e Fournier D. Pascual S. Montembault V. Fontaine L. J. Polym. Sci., Part A: Polym. Chem.  2006,  44:  5316 
  • 3f Pawluczyk JM. McClain RT. Denicola C. Mulhearn JJ. Rudd DJ. Lindsley CW. Tetrahedron Lett.  2007,  48:  1497 
  • 3g Chen G. Tao L. Mantovani G. Geng J. Nystroem D. Haddleton DM. Macromolecules  2007,  40:  7513 
  • 4 Leung PS.-W. Teng Y. Toy PH. Synlett  2010,  1997 
  • 5 Leung PS.-W. Teng Y. Toy PH. Org. Lett.  2010,  12:  4996 
  • For our work regarding cross-linked polymers, see:
  • 7a Kwok M. Choi W. He HS. Toy PH. J. Org. Chem.  2003,  68:  9831 
  • 7b Zhao LJ. He HS. Shi M. Toy PH. J. Comb. Chem.  2004,  6:  680 
  • 7c Zhao L.-J. Kwong CK.-W. Shi M. Toy PH. Tetrahedron  2005,  61:  12026 
  • For our work regarding noncross-linked polymers, see:
  • 8a Harned AM. He HS. Toy PH. Flynn DL. Hanson PR. J. Am. Chem. Soc.  2005,  127:  52 
  • 8b He HS. Yan JJ. Shen R. Zhuo S. Toy PH. Synlett  2006,  563 
  • 8c Kwong CK.-W. Fu MY. Law HC.-H. Toy PH. Synlett  2010,  2617 
  • 9 Chung CWY. Toy PH. J. Comb. Chem.  2007,  9:  155 
  • 10 Kwong CK.-W. Huang R. Zhang M. Shi M. Toy PH. Chem. Eur. J.  2007,  13:  2369 
  • For selected reviews regarding the addition of carbon dioxide to epoxides to form cyclic carbonates, see:
  • 11a Dai W.-L. Luo S.-L. Yin S.-F. Au C.-T. Appl. Catal., A  2009,  366:  2 
  • 11b Sakakura T. Kohno K. Chem. Commun.  2009,  1312 
  • 11c North M. Pasquale R. Young C. Green Chem.  2010,  12:  1514 
  • For the organocatalytic addition of carbon dioxide to epoxides, see:
  • 12a Shiels RA. Jones CW. J. Mol. Catal. A: Chem.  2007,  261:  160 ; and references cited therein
  • 12b Qi C. Jiang H. Wang Z. Zou B. Yang S. Synlett  2007,  255 
  • 12c Barkakaty B. Morino K. Sudo A. Endo T. Green Chem.  2010,  12:  42 
  • For selected reviews regarding polymer-supported organocatalysts, see:
  • 13a Benaglia M. Puglisi A. Cozzi F. Chem. Rev.  2003,  103:  3401 
  • 13b Benaglia M. New J. Chem.  2006,  30:  1525 
  • 13c Cozzi F. Adv. Synth. Catal.  2006,  348:  1367 
  • 13d Gruttadauria M. Giacalone F. Noto R. Chem. Soc. Rev.  2008,  37:  1666 
  • 13e Kristensen TE. Hansen T. Eur. J. Org. Chem.  2010,  3179 
  • For the use of polymer-supported organocatalysts in the addition of carbon dioxide to epoxides, see:
  • 14a Xie H. Duan H. Li S. Zhang S. New J. Chem.  2005,  29:  1199 
  • 14b Du Y. Wang J.-Q. Chen J.-Y. Cai F. Tian J.-S. Kong D.-L. He L.-N. Tetrahedron Lett.  2006,  47:  1271 
  • 14c Jagtap SR. Raje VP. Samant SD. Bhanage BM. J. Mol. Catal. A: Chem.  2007,  266:  69 
  • 14d Qi C.-R. Jiang H.-F. Wang Z.-Y. Zou B. Chin. J. Chem.  2007,  25:  1051 
  • 14e Qi C. Ye J. Zeng W. Jiang H. Adv. Synth. Catal.  2010,  352:  1925 
  • For the use of other polymers, such as ion-exchange resins, polyaniline salts, and immobilized ionic liquids, to catalyze the addition of carbon dioxide to epoxides, see:
  • 15a Du Y. Cai F. Kong D.-L. He L.-N. Green Chem.  2005,  7:  518 
  • 15b He J. Wu T. Zhang Z. Ding K. Han B. Xie Y. Jiang T. Liu Z. Chem. Eur. J.  2007,  13:  6992 
  • 15c Xie Y. Zhang Z. Jiang T. He J. Han B. Wu T. Ding K. Angew. Chem. Int. Ed.  2007,  46:  7255 
  • 16a Toy PH. Janda KD. Tetrahedron Lett.  1999,  40:  6329 
  • 16b Toy PH. Reger TS. Janda KD. Aldrichimica Acta  2000,  33:  87 
  • 16c Toy PH. Reger TS. Garibay P. Garno JC. Malikayil JA. Liu G.-Y. Janda KD.
    J. Comb. Chem.  2001,  3:  117 
  • 16d Choi MKW. Toy PH. Tetrahedron  2004,  60:  2903 
  • 19 Yue Y. Yu X.-Q. Pu L. Chem. Eur. J.  2009,  15:  5104 
  • 20a Bollini M. González M. Bruno AM. Tetrahedron Lett.  2009,  50:  1507 
  • 20b Ko K. Nakano K. Watanabe S. Ichikawa Y. Kotsuki H. Tetrahedron Lett.  2009,  50:  4025 
  • 20c Deb I. Shanbhag P. Mobin SM. Namboothiri INN. Eur. J. Org. Chem.  2009,  4091 
  • 20d Mhasni O. Rezgui F. Tetrahedron Lett.  2010,  51:  586 
  • 20e Naidu KC. Babu GR. Gangaiah L. Mukkanti K. Madhusudhan G. Tetrahedron Lett.  2010,  51:  1226 
  • 20f Angelini T. Fringuelli F. Lanari D. Pizzo F. Vaccaro L. Tetrahedron Lett.  2010,  51:  1566 
  • 20g Goncalves S. Nicolas M. Wagner A. Baati R. Tetrahedron Lett.  2010,  51:  2348 
  • 20h Aoki S. Kotani S. Sugiura M. Nakajima M. Tetrahedron Lett.  2010,  51:  3547 
  • 20i Hudhomme P. Synlett  2010,  1331 
  • 20j Vuluga D. Legros J. Crousse B. Bonnet-Delpon D. Chem. Eur. J.  2010,  16:  1776 
  • 20k Helou M. Miserque O. Brusson J.-M. Carpentier J.-F. Guillaume SM. Chem. Eur. J.  2010,  16:  13805 
6

Teng, Y.; Toy, P. H. Synlett 2011, 551.

17

See Supporting Information for details.

18

General Procedure for CO 2 Addition Reactions
Epoxide 7a-j (22.4 mmol), CH2Cl2 (0.5 mmol), and 4 (0.224 mmol) were placed in a 25 mL stainless-steel autoclave. Carbon dioxide was then introduced into the reactor at an initial pressure of 20 bar at r.t. The reactor was then heated to 120 ˚C, and the pressure was adjusted to 30 bar. The reaction mixture was stirred under these conditions for the indicated time, and then the autoclave was cooled using an ice bath. After releasing the pressure, compound 4 was filtered off and washed with CH2Cl2. The filtrate was concentrated in vacuo to afford the product 8a-j. The identity of the products was confirmed by ¹H NMR.