Subscribe to RSS
DOI: 10.1055/s-0030-1258563
One-Pot Synthesis of Conjugated (E)-Enynones via Two Types of Cross-Coupling Reaction
Publication History
Publication Date:
03 September 2010 (online)
Abstract
(Trimethylsilyl)ethynyl bromide can be easily transformed into conjugated (E)-enynones, whose skeleton consists of consecutive carbonyl, ethynyl, and (E)-ethenyl units, via a one-pot multicomponent Suzuki-type reaction-Sonogashira reaction sequence. Thus, a three-component coupling of (trimethylsilyl)ethynyl bromide, (E)-alk-1-enyldisiamylborane and acid chloride is achieved in a two-step, one-pot procedure, in which (E)-alk-1-enyl group is installed as nucleophile in the sp-carbon atom attached to bromine atom and acyl group is installed as electrophile in the other sp-carbon atom.
Key words
(trimethylsilyl)ethynyl bromide - conjugated enynone - cross-coupling - alkenylborane - acid chloride
- For example, see:
-
1a
Thompson CF.Jamison TF.Jacobsen EN. J. Am. Chem. Soc. 2001, 123: 9974 -
1b
Marco-Contelles J.de Opazo E. J. Org. Chem. 2002, 67: 3705 -
1c
Aoki S.Matsui K.Wei H.Murakami N.Kobayashi M. Tetrahedron 2002, 58: 5417 - For example, see:
-
2a
Arcadi A.Marinelli F.Rossi E. Tetrahedron 1999, 55: 13233 -
2b
Adlington RM.Baldwin JE.Pritchard GJ.Spencer KC. Tetrahedron Lett. 2000, 41: 575 -
2c
Wang X.-J.Tan J.Zhang L. Org. Lett. 2000, 2: 3107 -
2d
Jeevanandam A.Narkunan K.Ling Y.-C. J. Org. Chem. 2001, 66: 6014 -
2e
Grotjahn DB.Van S.Combs D.Lev DA.Schneider C.Rideout M.Meyer C.Hernandez G.Mejorado L. J. Org. Chem. 2002, 67: 9200 - For example, see:
-
3a
Dodero VI.Koll LC.Faraoni MB.Mitchell TN.Podestá JC. J. Org. Chem. 2003, 68: 10087 -
3b
Trost BM.Ball ZT. J. Am. Chem. Soc. 2004, 126: 13942 -
4a
Tohda Y.Sonogashira K.Hagihara N. Synthesis 1977, 777 -
4b
Chowdhury C.Kundu NG. Tetrahedron Lett. 1996, 37: 7323 -
4c
Chowdhury C.Kundu NG. Tetrahedron 1999, 55: 7011 -
4d
Wang J.-X.Wei B.Huang D.Hu Y.Bai L. Synth. Commun. 2001, 31: 3337 -
4e
Wang J.-X.Wei B.Hu Y.Liu Z.Fu Y. Synth. Commun. 2001, 31: 3527 -
4f
Karpov AS.Müller TJJ. Org. Lett. 2003, 5: 3451 -
4g
Guo M.Li D.Zhang Z. J. Org. Chem. 2003, 68: 10172 -
4h
Yin J.Wang X.Liang Y.Wu X.Chen B.Ma Y. Synthesis 2004, 331 -
4i
Alonso DA.Nájera C.Pacheco MC. J. Org. Chem. 2004, 69: 1615 -
4j
Chen L.Li C.-J. Org. Lett. 2004, 6: 3151 -
4k
Cox RJ.Ritson DJ.Dane TA.Berge J.Charmant JPH.Kantacha A. Chem. Commun. 2005, 1037 -
4l
Palimkar SS.Kumar PH.Jogdand NR.Daniel T.Lahoti RJ.Srinivasan KV. Tetrahedron Lett. 2006, 47: 5527 -
4m
Likhar PR.Subhas MS.Roy M.Roy S.Kantam ML. Helv. Chim. Acta 2008, 91: 259 -
4n
Lv Q.-R.Meng X.Wu J.-S.Gao Y.-J.Li C.-L.Zhu Q.-Q.Chen B.-H. Catal. Commun. 2008, 9: 2127 -
4o
Chen J.-Y.Lin T.-C.Chen S.-C.Chen A.-J.Mou C.-Y.Tsai F.-Y. Tetrahedron 2009, 65: 10134 -
4p
Bakherad M.Keivanloo A.Bahramian B.Rajaie M. Tetrahedron Lett. 2010, 51: 33 - 5 Alkynyllithium:
Stefani HA.Cella R.Dörr FA.de Pereira CMP.Gomes FP.Zeni G. Tetrahedron Lett. 2005, 46: 2001 - Alkynylborane:
-
6a
Oh CH.Reddy VR. Tetrahedron Lett. 2004, 45: 8545 -
6b
Nishihara Y.Saito D.Inoue E.Okada Y.Miyazaki M.Inoue Y.Takagi K. Tetrahedron Lett. 2010, 51: 306 - Alkynylaluminium:
-
7a
Wakamatsu K.Okuda Y.Oshima K.Nozaki H. Bull. Chem. Soc. Jpn. 1985, 58: 2425 -
7b
Wang B.Bonin M.Micouin L. J. Org. Chem. 2005, 70: 6126 - Alkynylsilane:
-
8a
Ito H.Arimoto K.Sensui H.Hosomi A. Tetrahedron Lett. 1997, 38: 3977 -
8b
Yadav JS.Reddy BVS.Reddy MS. Synlett 2003, 1722 -
8c
Yadav JS.Reddy BVS.Reddy MS.Parimala G. Synthesis 2003, 2390 - 9 Alkynylzinc:
Negishi E.Bagheri V.Chatterjee S.Luo F.-T.Miller JA.Stoll AT. Tetrahedron Lett. 1983, 24: 5181 - 10 Alkynylcopper:
Qian H.Shao L.-X.Huang X. Synlett 2001, 1571 - 11 Alkynylgallate:
Han Y.Fang L.Tao W.-T.Huang Y.-Z. Tetrahedron Lett. 1995, 36: 1287 - Alkynylindium:
-
12a
Pérez I.Sestelo JP.Sarandeses LA. J. Am. Chem. Soc. 2001, 123: 4155 -
12b
Augé J.Lubin-Germain N.Seghrouchni L. Tetrahedron Lett. 2003, 44: 819 - Alkynyltin:
-
13a
Logue MW.Teng K. J. Org. Chem. 1982, 47: 2549 -
13b
Kuhn H.Neumann WP. Synlett 1994, 123 -
13c
Lerebours B.Camacho-Soto A.Wolf C. J. Org. Chem. 2005, 70: 8601 - Alkynylstibine:
-
14a
Kakusawa N.Yamaguchi K.Kurita J.Tsuchiya T. Tetrahedron Lett. 2000, 41: 4143 -
14b
Kakusawa N.Tobiyasu Y.Yasuike S.Yamaguchi K.Seki H.Kurita J. J. Organomet. Chem. 2006, 691: 2953 - 15 Alkynylthallium:
Marko IE.Southern JM. J. Org. Chem. 1990, 55: 3368 -
16a
Kobayashi T.Tanaka M. J. Chem. Soc., Chem. Commun. 1981, 333 -
16b
Delaude L.Masdeu AM.Alper H. Synthesis 1994, 1149 -
16c
Arcadi A.Cacchi S.Marinelli F.Pace P.Sanzi G. Synlett 1995, 823 -
16d
Kang S.-K.Lim K.-H.Ho P.-S.Kim W.-Y. Synthesis 1997, 874 -
16e
Mohamed Ahmed MS.Mori A. Org. Lett. 2003, 5: 3057 -
16f
Liang B.Huang M.You Z.Xiong Z.Lu K.Fathi R.Chen J.Yang Z. J. Org. Chem. 2005, 70: 6097 -
16g
Sans V.Trzeciak AM.Luis S.Ziókowski JJ. Catal. Lett. 2006, 109: 37 -
16h
Rahman MT.Fukuyama T.Kamata N.Sato M.Ryu I. Chem. Commun. 2006, 2236 -
16i
Ma W.Li X.Yang J.Liu Z.Chen B.Pan X. Synthesis 2006, 2489 -
16j
Liu J.Chen J.Xia C. J. Catal. 2008, 253: 50 -
16k
Tambade PJ.Patil YP.Nandurkar NS.Bhanage BM. Synlett 2008, 886 -
16l
Liu J.Peng X.Sun W.Zhao Y.Xia C. Org. Lett. 2008, 10: 3933 -
16m
Fusano A.Fukuyama T.Nishitani S.Inouye T.Ryu I. Org. Lett. 2010, 12: 2410 - 17
Vong BG.Kim SH.Abraham S.Theodorakis EA. Angew. Chem. Int. Ed. 2004, 43: 3947 - 18
Inhülsen I.Margaretha P. Org. Lett. 2010, 12: 728 -
19a
Shergina SI.Sokolov IE.Zanina AS. Mendeleev Commun. 1994, 4: 207 -
19b
Van den Hoven BG.El Ali B.Alper H. J. Org. Chem. 2000, 65: 4131 -
20a
Hoshi M.Nakayabu H.Shirakawa K. Synthesis 2005, 1991 -
20b
Hoshi M.Suzuki S.Saitoh S.Okimoto M.Shirakawa K. Tetrahedron Lett. 2007, 48: 119 -
20c
Hoshi M.Iizawa T.Okimoto M.Shirakawa K. Synthesis 2008, 3591 -
21a
Hoshi M.Shirakawa K. Synlett 2002, 1101 -
21b
Hoshi M.Kawamura N.Shirakawa K. Synthesis 2006, 1961
References and Notes
Compound 2a was formed in about 75% GC yield based on Me3SiC≡CBr employed, see ref. 21.
23Considering that acid chloride would be consumed by reaction with residual both NaOMe and MeOH, an excess amount of benzoyl chloride was employed in this one-pot reaction. Indeed, using a stoichiometric amount of benzoyl chloride (0.5 mmol), a decrease in the yield of product 3aa was observed.
24Among amine bases including i-Pr2NEt, Et3N was the base of choice for the cross-coupling reaction with benzoyl chloride.
25To a solution of BH3 (1
mmol) in THF (3 mL) was added 2-methylbut-2-ene (0.14 g, 2 mmol)
dropwise at -15 ˚C under argon, and the mixture
was stirred for 2 h at 0 ˚C to form a solution of disiamylborane
in THF. To this solution was added oct-1-yne (0.11 g, 1 mmol) dropwise
at -15 ˚C, and the mixture was stirred for 2 h
at 0 ˚C. A solution of (E)-oct-1-enyldisiamylborane
(1a, 1 mmol) in THF, thus prepared, was
cooled to -15 ˚C, and Cu(acac)2 (0.013
g, 0.05 mmol) was added to the solution under a flow of argon,
followed by dropwise addition of (trimethylsilyl)ethynyl bromide (0.119
g, 0.67 mmol) and NaOMe (1 M, 0.75 mL, 0.75 mmol). The resulting
mixture was allowed to warm gradually to r.t. and stirred overnight.
Methanol resulting from 1 M NaOMe was removed under reduced pressure, accompanied
by the solvent. After addition of THF (3 mL) to the residue under
argon, the resulting mixture including (E)-dec-3-en-1-yne
(2a) was cooled to 0 ˚C, and Pd(OAc)2 (0.002
g, 0.01 mmol) and Ph3P (0.005 g, 0.02 mmol) were added
successively under a flow of argon, followed by dropwise addition
of benzoyl chloride (0.141 g, 1 mmol) and Et3N (0.101
g, 1 mmol). The resultant mixture was stirred for 2 h at r.t. and
then oxidized by the successive addition of 3 M NaOH (1 mL) and
30% H2O2 (0.5 mL) at 0 ˚C.
After being stirred for 1 h at this temperature, the mixture was extracted
three times with Et2O. The combined extracts were washed
with brine, dried over Na2SO4, and concentrated. The
residue was purified by flash chromatography on silica gel, with
hexane-CH2Cl2 (1:1) as eluent, to
give (E)-1-phenylundec-4-en-2-yn-1-one
(3aa, 0.103 g, 86%).
Compound 3aa: ¹H NMR (500 MHz,
CDCl3): δ = 0.89 (t, J = 7.1
Hz, 3 H), 1.25-1.35 (m, 6 H), 1.42-1.49 (m, 2
H), 2.21-2.26 (m, 2 H), 5.74 (dt, J = 16.1,
1.5 Hz, 1 H), 6.63 (dt, J = 16.1,
7.1 Hz, 1 H), 7.46-7.50 (m, 2 H), 7.58-7.62 (m,
1 H), 8.13-8.16 (m, 2 H). ¹³C
NMR (125 MHz, CDCl3): δ = 14.06 (CH3),
22.56 (CH2), 28.22 (CH2), 28.78 (CH2),
31.59 (CH2), 33.64 (CH2), 86.05 (≡C),
92.85 (≡C), 107.65 (=CH), 128.50 (2 × =CH),
129.50 (2 × =CH), 133.90 (=CH),
136.92 (=C), 153.10 (=CH), 178.11 (C=O).
IR (neat): 2954, 2927, 2856, 2183, 1641, 1620, 1596, 1579, 1448,
1313, 1265, 1174, 956, 937, 700 cm-¹.
HRMS (EI): m/z calcd for C17H20O:
240.1514; found: 240.1508.
Compounds 2b-d were formed in 72-74% GC yields based on Me3SiC≡CBr employed; unpublished results.