Horm Metab Res 2010; 42(7): 521-527
DOI: 10.1055/s-0030-1249019
Original Basic

© Georg Thieme Verlag KG Stuttgart · New York

Comparative Proteomic Analysis of Proteins Influenced by Melanin-concentrating Hormone and Melanin-concentrating Hormone Receptor 2 Interaction

Q. Zhang1 , 2 , C.-F. Yuan2 , M.-J. Wu3 , Y.-G. Wang4 , Q. Qin1 , 2 , Y.-Y. Shi2 , G.-L. Liu2 , F.-Z. Song 2
  • 1Department of Clinical Medicine, Chongqing Medical and Pharmaceutical College, Chongqing, China
  • 2Molecular Medicine & Cancer Research Center, Chongqing Medical University, Chongqing, China
  • 3Institute of Life Sciences, Chongqing Medical University, Chongqing, China
  • 4Department of General Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
Weitere Informationen

Publikationsverlauf

received 02.04.2009

accepted after second revision 01.02.2010

Publikationsdatum:
25. März 2010 (online)

Abstract

Melanin-concentrating hormone receptor 2 (MCHR2), a second G protein-coupled receptor for melanin-concentrating hormone (MCH), has been known for many years. However, its physiological function is poorly understood. To identify the proteins involved in MCHR2 physiological function, a comparative proteomic analysis of protein expression in SH-SY5Y cells stably expressing human MCHR2 (SH-SY5Y-MCHR2) and control SH-SY5Y cells (SH-SY5Y-mock) – both treated with MCH – was conducted. Significant changes were observed in the expression of 34 proteins, including isocitrate dehydrogenase (NAD) subunit alpha, mitochondrial (IDH3A), phosphoenolpyruvate carboxykinase 1 (PCK1), 6-phosphofructo-2-kinase/fructose-2.6-biphosphatase 4 (PFKFB4), insulin-induced gene 2 protein (INSIG2), and acyl-coenzyme A thioesterase 8 (ACOT8). Among the proteins, IDH3A, PCK1, PFKFB4 increased significantly, and INSIG2, ACOT8 decreased significantly in experimental cells compared with control cells; these findings were further confirmed by semi-quantitative RT-PCR and Western blot analysis. The comparative proteome data may provide a valuable clue to further understand MCHR2 physiological function, and several differentially regulated proteins may be used as target proteins for the development of novel drugs.

References

  • 1 Sailer AW, Sano H, Zeng Z, McDonald TP, Pan J, Pong SS, Feighner SD, Tan CP, Fukami T, Iwaasa H, Hreniuk DL, Morin NR, Sadowski SJ, Ito M, Bansal A, Ky B, Figueroa DJ, Jiang Q, Austin CP, MacNeil DJ, Ishihara A, Ihara M, Kanatani A, Van der Ploeg LH, Howard AD, Liu Q. Identification and characterization of a second melanin-concentrating hormone receptor, MCH-2R.  Proc Natl Acad Sci U S A. 2001;  98 7564-7569
  • 2 Rodriguez M, Beauverger P, Naime I, Rique H, Ouvry C, Souchaud S, Dromaint S, Nagel N, Suply T, Audinot V, Boutin JA, Galizzi JP. Cloning and molecular characterization of the novel human melanin-concentrating hormone receptor MCH2.  Mol Pharmacol. 2001;  60 632-639
  • 3 Hill J, Duckworth M, Murdock P, Rennie G, Sabido-David C, Ames RS, Szekeres P, Wilson S, Bergsma DJ, Gloger IS, Levy DS, Chambers JK, Muir AI. Molecular cloning and functional characterization of MCH2, a novel human MCH receptor.  J Biol Chem. 2001;  276 20125-20129
  • 4 Shimada M, Tritos NA, Lowell BB, Flier JS, Maratos-Flier E. Mice lacking melanin-concentrating hormone are hypophagic and lean.  Nature. 1998;  396 670-674
  • 5 Rossi M, Beak SA, Choi SJ, Small CJ, Morgan DG, Ghatei MA, Smith DM, Bloom SR. Investigation of the feeding effects of melanin concentrating hormone on food intake-action independent of galanin and the melanocortin receptors.  Brain Res. 1999;  846 164-170
  • 6 Huang Q, Viale A, Picard F, Nahon J, Richard D. Effects of leptin on melanin-concentrating hormone expression in the brain of lean and obese Lep(ob)/Lep(ob) mice.  Neuroendocrinology. 1999;  69 145-153
  • 7 Chen Y, Hu C, Hsu CK, Zhang Q, Bi C, Asnicar M, Hsiung HM, Fox N, Slieker LJ, Yang DD, Heiman ML, Shi Y. Targeted disruption of the melanin-concentrating hormone receptor-1 results in hyperphagia and resistance to diet-induced obesity.  Endocrinology. 2002;  143 2469-2477
  • 8 Mashiko S, Ishihara A, Gomori A, Moriya R, Ito M, Iwaasa H, Matsuda M, Feng Y, Shen Z, Marsh DJ, Bednarek MA, MacNeil DJ, Kanatani A. Antiobesity effect of a melanin-concentrating hormone 1 receptor antagonist in diet-induced obese mice.  Endocrinology. 2005;  146 3080-3086
  • 9 Tan CP, Sano H, Iwaasa H, Pan J, Sailer AW, Hreniuk DL, Feighner SD, Palyha OC, Pong SS, Figueroa DJ, Austin CP, Jiang MM, Yu H, Ito J, Ito M, Ito M, Guan XM, MacNeil DJ, Kanatani A, Van der Ploeg LH, Howard AD. Melanin-concentrating hormone receptor subtypes 1 and 2: species-specific gene expression.  Genomics. 2002;  79 785-792
  • 10 Blackstock WP, Weir MP. Proteomics:quantitative and physical mapping of cellular proteins.  Trends Biotechno. 1999;  17 121-127
  • 11 Sinz A, Bantscheff M, Mikkat S, Ringel B, Drynda S, Kekow J, Thiesen HJ, Glocker MO. Mass spectrometric proteome analyses of synovial fluids and plasmas from patients suffering from rheumatoid arthritis and comparison to reactive arthritis or osteoarthritis.  Electrophoresis. 2002;  23 3445-3456
  • 12 Kang S, Kim EY, Bahn YJ, Chung JW, Lee do H, Park SG, Yoon TS, Park BC, Bae KH. A proteomic analysis of the effect of MAPK pathway activation on L-glutamate-induced neuronal cell death.  Cell Mol Biol Lett. 2007;  12 139-147
  • 13 Ryu SI, Kim WK, Cho HJ, Lee PY, Jung H, Yoon TS, Moon JH, Kang S, Poo H, Bae KH, Lee SC. Phosphoproteomic analysis of AML14.3D10 cell line as a model system of eosinophilia.  J Biochem Mol Biol. 2007;  40 765-772
  • 14 Yoon SW, Kim TY, Sung MH, Kim CJ, Poo H. Comparative proteomic analysis of peripheral blood eosinophils from healthy donors and atopic dermatitis patients with eosinophilia.  Proteomics. 2005;  5 1987-1995
  • 15 Kang TH, Bae KH, Yu MJ, Kim WK, Hwang HR, Jung H, Lee PY, Kang S, Yoon TS, Park SG, Ryu SE, Lee SC. Phosphoproteomic analysis of neuronal cell death by glutamate-induced oxidative stress.  Proteomics. 2007;  7 2624-2635
  • 16 Na KS, Park BC, Jang M, Cho S, Lee do H, Kang S, Lee CK, Bae KH, Park SG. Protein disulfide isomerase is cleaved by caspase-3 and -7 during apoptosis.  Mol Cells. 2007;  24 261-267
  • 17 Liu R, Li Z, Bai S, Zhang H, Tang M, Lei Y, Chen L, Liang S, Zhao YL, Wei Y, Huang C. Mechanism of cancer cell adaptation to metabolic stress: proteomics identification of a novel thyroid hormone-mediated gastric carcinogenic signaling pathway.  Mol Cell Proteomics. 2009;  8 70-85
  • 18 Audinot V, Beauverger P, Lahaye C, Suply T, Rodriguez M, Ouvry C, Lamamy V, Imbert J, Rique H, Nahon JL, Galizzi JP, Canet E, Levens N, Fauchere JL, Boutin JA. Structure-Activity Relationship Studies of Melanin-concentrating Hormone (MCH)-related Peptide Ligands at SLC-1, the Human MCH Receptor.  J Biol Chem. 2001;  276 13554-13562
  • 19 Rabilloud T, Adessi C, Giraudel A, Lunardi J. Improvement of the solubilization of proteins in two-dimensional electrophoresis with immobilized pH gradients.  Electrophoresis. 1997;  18 307-316
  • 20 Gorg A, Postel W, Weser J, Gunther S, Strahler JR, Hanash SM, Somerlot L. Elimination of point straking on silver-stained two-dimensional gels by addition of iodoacetamide to the equilibration buffer.  Electrophoresis. 1987;  8 122-124
  • 21 Meyre D, Lecoeur C, Delplanque J, Francke S, Vatin V, Durand E, Weill J, Dina C, Froguel P. A genome-wide scan for childhood obesity-associated traits in French families shows significant linkage on chromosome 6q22.31-q23.2.  Diabetes. 2004;  53 803-811
  • 22 Gong Y, Lee JN, Brown MS, Goldstein JL, Ye J. Juxtamembranous aspartic acid in Insig-1 and Insig-2 is required for cholesterol homeostasis.  Proc Natl Acad Sci USA. 2006;  103 6154-6159
  • 23 Takaishi K, Duplomb L, Wang MY, Li J, Unger RH. Hepatic insig-1 or -2 overexpression reduces lipogenesis in obese Zucker diabetic fatty rats and in fasted/refed normal rats.  Proc Natl Acad Sci USA. 2004;  101 7106-7111
  • 24 Cheverud JM, Ehrich TH, Hrbek T, Kenney JP, Pletscher LS, Semenkovich CF. Quantitative trait loci for obesity- and diabetes-related traits and their dietary responses to high-fat feeding in LGXSM recombinant inbred mouse strains.  Diabetes. 2004;  53 3328-3336
  • 25 Orkunoglu-Suer FE, Gordish-Dressman H, Clarkson PM, Thompson PD, Angelopoulos TJ, Gordon PM, Moyna NM, Pescatello LS, Visich PS, Zoeller RF, Harmon B, Seip RL, Hoffman EP, Devaney JM. INSIG2 gene polymorphism is associated with increased subcutaneous fat in women and poor response to resistance training in men.  BMC Med Genet. 2008;  9 117
  • 26 Krapivner S, Popov S, Chernogubova E, Hellénius ML, Fisher RM, Hamsten A, van’t Hooft FM. Insulin-induced gene 2 involvement in human adipocyte metabolism and body weight regulation.  J Clin Endocrinol Metab. 2008;  93 1995-2001
  • 27 Raghow R, Yellaturu C, Deng X, Park EA, Elam MB. SREBPs: the crossroads of physiological and pathological lipid homeostasis.  Trends Endocrinol Metab. 2008;  19 65-73
  • 28 Radhakrishnan A, Ikeda Y, Kwon HJ, Brown MS, Goldstein JL. Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: oxysterols block transport by binding to Insig.  Proc Natl Acad Sci USA. 2007;  104 6511-6518
  • 29 McPherson R, Gauthier A. Molecular regulation of SREBP function: the Insig-SCAP connection and isoform-specific modulation of lipid synthesis.  Biochem Cell Biol. 2004;  82 201-211
  • 30 Manzano A, Pérez JX, Nadal M, Estivill X, Lange A, Bartrons R. Cloning, expression and chromosomal localization of a human testis 6-phosphofructo-2-kinase/fructose-2.6-bisphosphatase gene.  Gene. 1999;  229 83-89
  • 31 Van Schaftingen E, Jett MF, Hue L, Hers HG. Control of liver 6-phosphofructokinase by fructose 2.6-bisphosphate and other effectors.  Proc Natl Acad Sci U S A. 1981;  78 3483-3486
  • 32 Beale EG, Harvey BJ, Forest C. PCK1 and PCK2 as candidate diabetes and obesity genes.  Cell Biochem Biophys. 2007;  48 89-95
  • 33 Beale EG, Hammer RE, Antoine B, Forest C. Disregulated glyceroneogenesis: PCK1 as a candidate diabetes and obesity gene.  Trends Endocrinol Metab. 2004;  15 129-135
  • 34 Gómez-Valadés AG, Méndez-Lucas A, Vidal-Alabró A, Blasco FX, Chillon M, Bartrons R, Bermúdez J, Perales JC. Pck1 gene silencing in the liver improves glycemia control, insulin sensitivity, and dyslipidemia in db/db mice.  Diabetes. 2008;  57 2199-2210
  • 35 Watkins PA. Fatty acid activation.  Prog Lipid Res. 1997;  36 55-83
  • 36 Watkins PA, Maiguel D, Jia Z, Pevsner J. Evidence for 26 distinct acyl-coenzyme A synthetase genes in the human genome.  J Lipid Res. 2007;  48 2736-2750
  • 37 Westin MA, Hunt MC, Alexson SE. The identification of a succinyl-CoA thioesterase suggests a novel pathway for succinate production in peroxisomes.  J Biol Chem. 2005;  280 38125-38132
  • 38 Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus.  Lancet. 1963;  1 785-789
  • 39 Randle PJ, Garland PB, Newsholme EA, Hales CN. The glucose fatty acid cycle in obesity and maturity onset diabetes mellitus.  Ann N Y Acad Sci. 1965;  131 324-333
  • 40 Fu Y, Buryanovskyy L, Zhang Z. Quinone reductase 2 is a catechol quinone reductase.  J Biol Chem. 2008;  283 23829-23835
  • 41 Harada S, Tachikawa H, Kawanishi Y. A possible association between an insertion/deletion polymorphism of the NQO2 gene and schizophrenia.  Psychiatr Genet. 2003;  13 205-209

Correspondence

Prof. Fang-Zhou Song

Molecular Medicine & Cancer

Research Center

Chongqing Medical University

Chongqing 400016

China

Telefon: +86/23/684 859 58

Fax: +86/23/684 859 58

eMail: fzsongcq@163.com

    >