Semin Liver Dis 2010; 30(1): 035-051
DOI: 10.1055/s-0030-1247131
© Thieme Medical Publishers

Molecular Classification and Novel Targets in Hepatocellular Carcinoma: Recent Advancements

Yujin Hoshida1 , 2 , Sara Toffanin3 , Anja Lachenmayer3 , Augusto Villanueva4 , Beatriz Minguez3 , Josep M. Llovet3 , 4 , 5
  • 1Cancer Program, Broad Institute, Cambridge, Massachusetts
  • 2Dana-Farber Cancer Institute, Boston, Massachusetts
  • 3Mount Sinai Liver Cancer Program, Division of Liver Diseases, Mount Sinai School of Medicine, New York, New York
  • 4Barcelona-Clínic Liver Cancer Group (BCLC), Liver Unit, CIBERehd, Hospital Clínic, IDIBAPS, Barcelona, Spain
  • 5Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
Further Information

Publication History

Publication Date:
19 February 2010 (online)

ABSTRACT

Hepatocellular carcinoma (HCC) is one of most lethal cancers worldwide. Strategic decisions for the advancement of molecular therapies in this neoplasm require a clear understanding of its molecular classification. Studies indicate aberrant activation of signaling pathways involved in cellular proliferation (e.g., epidermal growth factor and RAS/mitogen-activated protein kinase pathways), survival (e.g., Akt/mechanistic target of rapamycin pathway), differentiation (e.g., Wnt and Hedgehog pathways), and angiogenesis (e.g., vascular endothelial growth factor and platelet-derived growth factor), which is heterogeneously presented in each tumor. Integrative analysis of accumulated genomic datasets has revealed a global scheme of molecular classification of HCC tumors observed across diverse etiologic factors and geographic locations. Such a framework will allow systematic understanding of the frequently co-occurring molecular aberrations to design treatment strategy for each specific subclass of tumors. Accompanied by a growing number of clinical trials of molecular targeted drugs, diagnostic and prognostic biomarker development will be facilitated with special attention on study design and with new assay technologies specialized for archived fixed tissues. A new class of genomic information, microRNA dysregulation and epigenetic alterations, will provide insight for more precise understanding of disease mechanism and expand the opportunity of biomarker/therapeutic target discovery. These efforts will eventually enable personalized management of HCC.

REFERENCES

  • 1 Parkin D M, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002.  CA Cancer J Clin. 2005;  55(2) 74-108
  • 2 El-Serag H B, Rudolph K L. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis.  Gastroenterology. 2007;  132(7) 2557-2576
  • 3 Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun M J. Cancer statistics, 2009.  CA Cancer J Clin. 2009;  59(4) 225-249
  • 4 Llovet J M, Burroughs A, Bruix J. Hepatocellular carcinoma.  Lancet. 2003;  362(9399) 1907-1917
  • 5 Tandon P, Garcia-Tsao G. Prognostic indicators in hepatocellular carcinoma: a systematic review of 72 studies.  Liver Int. 2009;  29(4) 502-510
  • 6 Llovet J M, Bruix J. Novel advancements in the management of hepatocellular carcinoma in 2008.  J Hepatol. 2008;  48(Suppl 1) S20-S37
  • 7 Lemmer E R, Friedman S L, Llovet J M. Molecular diagnosis of chronic liver disease and hepatocellular carcinoma: the potential of gene expression profiling.  Semin Liver Dis. 2006;  26(4) 373-384
  • 8 Llovet J M. Clinical and molecular classification of hepatocellular carcinoma.  Liver Transpl. 2007;  13(11, Suppl 2) S13-S16
  • 9 Villanueva A, Toffanin S, Llovet J M. Linking molecular classification of hepatocellular carcinoma and personalized medicine: preliminary steps.  Curr Opin Oncol. 2008;  20(4) 444-453
  • 10 Llovet J M, Ricci S, Mazzaferro V SHARP Investigators Study Group et al. Sorafenib in advanced hepatocellular carcinoma.  N Engl J Med. 2008;  359(4) 378-390
  • 11 Llovet J M, Bruix J. Molecular targeted therapies in hepatocellular carcinoma.  Hepatology. 2008;  48(4) 1312-1327
  • 12 Farazi P A, DePinho R A. Hepatocellular carcinoma pathogenesis: from genes to environment.  Nat Rev Cancer. 2006;  6(9) 674-687
  • 13 Thorgeirsson S S, Grisham J W. Molecular pathogenesis of human hepatocellular carcinoma.  Nat Genet. 2002;  31(4) 339-346
  • 14 Feitelson M A, Sun B, Satiroglu Tufan N L, Liu J, Pan J, Lian Z. Genetic mechanisms of hepatocarcinogenesis.  Oncogene. 2002;  21(16) 2593-2604
  • 15 Suriawinata A, Xu R. An update on the molecular genetics of hepatocellular carcinoma.  Semin Liver Dis. 2004;  24(1) 77-88
  • 16 Laurent-Puig P, Zucman-Rossi J. Genetics of hepatocellular tumors.  Oncogene. 2006;  25(27) 3778-3786
  • 17 Villanueva A, Newell P, Chiang D Y, Friedman S L, Llovet J M. Genomics and signaling pathways in hepatocellular carcinoma.  Semin Liver Dis. 2007;  27(1) 55-76
  • 18 Woo H G, Park E S, Lee J S et al.. Identification of potential driver genes in human liver carcinoma by genomewide screening.  Cancer Res. 2009;  69(9) 4059-4066
  • 19 Jou Y S, Lee C S, Chang Y H et al.. Clustering of minimal deleted regions reveals distinct genetic pathways of human hepatocellular carcinoma.  Cancer Res. 2004;  64(9) 3030-3036
  • 20 Subramanian A, Tamayo P, Mootha V K et al.. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles.  Proc Natl Acad Sci U S A. 2005;  102(43) 15545-15550
  • 21 Lamb J, Crawford E D, Peck D et al.. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease.  Science. 2006;  313(5795) 1929-1935
  • 22 Lee J S, Chu I S, Heo J et al.. Classification and prediction of survival in hepatocellular carcinoma by gene expression profiling.  Hepatology. 2004;  40(3) 667-676
  • 23 Lee J S, Chu I S, Mikaelyan A et al.. Application of comparative functional genomics to identify best-fit mouse models to study human cancer.  Nat Genet. 2004;  36(12) 1306-1311
  • 24 Kaposi-Novak P, Lee J S, Gòmez-Quiroz L, Coulouarn C, Factor V M, Thorgeirsson S S. Met-regulated expression signature defines a subset of human hepatocellular carcinomas with poor prognosis and aggressive phenotype.  J Clin Invest. 2006;  116(6) 1582-1595
  • 25 Lee J S, Heo J, Libbrecht L et al.. A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells.  Nat Med. 2006;  12(4) 410-416
  • 26 Coulouarn C, Factor V M, Thorgeirsson S S. Transforming growth factor-beta gene expression signature in mouse hepatocytes predicts clinical outcome in human cancer.  Hepatology. 2008;  47(6) 2059-2067
  • 27 Boyault S, Rickman D S, de Reyniès A et al.. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets.  Hepatology. 2007;  45(1) 42-52
  • 28 Chiang D Y, Villanueva A, Hoshida Y et al.. Focal gains of VEGFA and molecular classification of hepatocellular carcinoma.  Cancer Res. 2008;  68(16) 6779-6788
  • 29 Zucman-Rossi J, Benhamouche S, Godard C et al.. Differential effects of inactivated Axin1 and activated beta-catenin mutations in human hepatocellular carcinomas.  Oncogene. 2007;  26(5) 774-780
  • 30 Gordon M D, Nusse R. Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors.  J Biol Chem. 2006;  281(32) 22429-22433
  • 31 Vlad A, Röhrs S, Klein-Hitpass L, Müller O. The first five years of the Wnt targetome.  Cell Signal. 2008;  20(5) 795-802
  • 32 Breuhahn K, Vreden S, Haddad R et al.. Molecular profiling of human hepatocellular carcinoma defines mutually exclusive interferon regulation and insulin-like growth factor II overexpression.  Cancer Res. 2004;  64(17) 6058-6064
  • 33 Woo H G, Park E S, Cheon J H et al.. Gene expression-based recurrence prediction of hepatitis B virus-related human hepatocellular carcinoma.  Clin Cancer Res. 2008;  14(7) 2056-2064
  • 34 Minguez B, Hoshida Y, Villanueva A et al.. Molecular gene signature to identify vascular invasion in hepatocellular carcinoma.  Hepatology. 2008;  48(4, Suppl) 386A
  • 35 Yamashita T, Forgues M, Wang W et al.. EpCAM and alpha-fetoprotein expression defines novel prognostic subtypes of hepatocellular carcinoma.  Cancer Res. 2008;  68(5) 1451-1461
  • 36 Wurmbach E, Chen Y B, Khitrov G et al.. Genome-wide molecular profiles of HCV-induced dysplasia and hepatocellular carcinoma.  Hepatology. 2007;  45(4) 938-947
  • 37 Nam S W, Lee J H, Noh J H et al.. Comparative analysis of expression profiling of early-stage carcinogenesis using nodule-in-nodule-type hepatocellular carcinoma.  Eur J Gastroenterol Hepatol. 2006;  18(3) 239-247
  • 38 Xu X R, Huang J, Xu Z G et al.. Insight into hepatocellular carcinogenesis at transcriptome level by comparing gene expression profiles of hepatocellular carcinoma with those of corresponding noncancerous liver.  Proc Natl Acad Sci U S A. 2001;  98(26) 15089-15094
  • 39 Kurokawa Y, Matoba R, Takemasa I et al.. Molecular-based prediction of early recurrence in hepatocellular carcinoma.  J Hepatol. 2004;  41(2) 284-291
  • 40 Wang S M, Ooi L L, Hui K M. Identification and validation of a novel gene signature associated with the recurrence of human hepatocellular carcinoma.  Clin Cancer Res. 2007;  13(21) 6275-6283
  • 41 Yoshioka S, Takemasa I, Nagano H et al.. Molecular prediction of early recurrence after resection of hepatocellular carcinoma.  Eur J Cancer. 2009;  45(5) 881-889
  • 42 Ye Q H, Qin L X, Forgues M et al.. Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning.  Nat Med. 2003;  9(4) 416-423
  • 43 Iizuka N, Oka M, Yamada-Okabe H et al.. Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocellular carcinoma after curative resection.  Lancet. 2003;  361(9361) 923-929
  • 44 Hoshida Y, Villanueva A, Kobayashi M et al.. Gene expression in fixed tissues and outcome in hepatocellular carcinoma.  N Engl J Med. 2008;  359(19) 1995-2004
  • 45 Chen X, Cheung S T, So S et al.. Gene expression patterns in human liver cancers.  Mol Biol Cell. 2002;  13(6) 1929-1939
  • 46 Villanueva A, Newell P, Chiang D Y et al.. Molecular and clinical characterization of hepatocellular carcinoma with progenitor cell markers.  Hepatology. 2008;  48(4, Suppl) 361A
  • 47 Cairo S, Armengol C, De Reyniès A et al.. Hepatic stem-like phenotype and interplay of Wnt/beta-catenin and Myc signaling in aggressive childhood liver cancer.  Cancer Cell. 2008;  14(6) 471-484
  • 48 Michiels S, Koscielny S, Hill C. Prediction of cancer outcome with microarrays: a multiple random validation strategy.  Lancet. 2005;  365(9458) 488-492
  • 49 Ntzani E E, Ioannidis J P. Predictive ability of DNA microarrays for cancer outcomes and correlates: an empirical assessment.  Lancet. 2003;  362(9394) 1439-1444
  • 50 Shi L, Reid L H, Jones W D MAQC Consortium et al. The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements.  Nat Biotechnol. 2006;  24(9) 1151-1161
  • 51 Okabe H, Satoh S, Kato T et al.. Genome-wide analysis of gene expression in human hepatocellular carcinomas using cDNA microarray: identification of genes involved in viral carcinogenesis and tumor progression.  Cancer Res. 2001;  61(5) 2129-2137
  • 52 Iizuka N, Oka M, Yamada-Okabe H et al.. Comparison of gene expression profiles between hepatitis B virus- and hepatitis C virus-infected hepatocellular carcinoma by oligonucleotide microarray data on the basis of a supervised learning method.  Cancer Res. 2002;  62(14) 3939-3944
  • 53 Honda M, Yamashita T, Ueda T, Takatori H, Nishino R, Kaneko S. Different signaling pathways in the livers of patients with chronic hepatitis B or chronic hepatitis C.  Hepatology. 2006;  44(5) 1122-1138
  • 54 Katoh H, Ojima H, Kokubu A et al.. Genetically distinct and clinically relevant classification of hepatocellular carcinoma: putative therapeutic targets.  Gastroenterology. 2007;  133(5) 1475-1486
  • 55 Laurent-Puig P, Legoix P, Bluteau O et al.. Genetic alterations associated with hepatocellular carcinomas define distinct pathways of hepatocarcinogenesis.  Gastroenterology. 2001;  120(7) 1763-1773
  • 56 Thorgeirsson S S, Lee J S, Grisham J W. Functional genomics of hepatocellular carcinoma.  Hepatology. 2006;  43(2, Suppl 1) S145-S150
  • 57 Luo J H, Ren B, Keryanov S et al.. Transcriptomic and genomic analysis of human hepatocellular carcinomas and hepatoblastomas.  Hepatology. 2006;  44(4) 1012-1024
  • 58 Midorikawa Y, Yamamoto S, Ishikawa S et al.. Molecular karyotyping of human hepatocellular carcinoma using single-nucleotide polymorphism arrays.  Oncogene. 2006;  25(40) 5581-5590
  • 59 Midorikawa Y, Tsutsumi S, Nishimura K et al.. Distinct chromosomal bias of gene expression signatures in the progression of hepatocellular carcinoma.  Cancer Res. 2004;  64(20) 7263-7270
  • 60 Rhodes D R, Yu J, Shanker K et al.. Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression.  Proc Natl Acad Sci U S A. 2004;  101(25) 9309-9314
  • 61 Cahan P, Rovegno F, Mooney D, Newman J C, St Laurent III G, McCaffrey T A. Meta-analysis of microarray results: challenges, opportunities, and recommendations for standardization.  Gene. 2007;  401(1-2) 12-18
  • 62 Ramasamy A, Mondry A, Holmes C C, Altman D G. Key issues in conducting a meta-analysis of gene expression microarray datasets.  PLoS Med. 2008;  5(9) e184
  • 63 Hoshida Y, Nijman S M, Kobayashi M et al.. Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma.  Cancer Res. 2009;  69(18) 7385-7392
  • 64 Di Bisceglie A M. Hepatitis B and hepatocellular carcinoma.  Hepatology. 2009;  49(5, Suppl) S56-S60
  • 65 Kremsdorf D, Soussan P, Paterlini-Brechot P, Brechot C. Hepatitis B virus-related hepatocellular carcinoma: paradigms for viral-related human carcinogenesis.  Oncogene. 2006;  25(27) 3823-3833
  • 66 Chan H L, Sung J J. Hepatocellular carcinoma and hepatitis B virus.  Semin Liver Dis. 2006;  26(2) 153-161
  • 67 Llovet J M, Lok A. Hepatitis B virus genotype and mutants: risk factors for hepatocellular carcinoma.  J Natl Cancer Inst. 2008;  100(16) 1121-1123
  • 68 Kenny P A, Enver T, Ashworth A. Receptor and secreted targets of Wnt-1/beta-catenin signalling in mouse mammary epithelial cells.  BMC Cancer. 2005;  5 3
  • 69 Sherman M. Hepatocellular carcinoma: epidemiology, risk factors, and screening.  Semin Liver Dis. 2005;  25(2) 143-154
  • 70 Lee J S, Thorgeirsson S S. Functional and genomic implications of global gene expression profiles in cell lines from human hepatocellular cancer.  Hepatology. 2002;  35(5) 1134-1143
  • 71 Kawai H F, Kaneko S, Honda M, Shirota Y, Kobayashi K. Alpha-fetoprotein-producing hepatoma cell lines share common expression profiles of genes in various categories demonstrated by cDNA microarray analysis.  Hepatology. 2001;  33(3) 676-691
  • 72 Kim J W, Ye Q, Forgues M et al.. Cancer-associated molecular signature in the tissue samples of patients with cirrhosis.  Hepatology. 2004;  39(2) 518-527
  • 73 Okamoto M, Utsunomiya T, Wakiyama S et al.. Specific gene-expression profiles of noncancerous liver tissue predict the risk for multicentric occurrence of hepatocellular carcinoma in hepatitis C virus-positive patients.  Ann Surg Oncol. 2006;  13(7) 947-954
  • 74 Budhu A, Forgues M, Ye Q H et al.. Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment.  Cancer Cell. 2006;  10(2) 99-111
  • 75 Chew V, Tow C, Teo M et al.. Inflammatory tumor microenvironment is associated with superior survival in hepatocellular carcinoma patients.  J Hepatol. 2009;  , August 3 (Epub ahead of print)
  • 76 Kuang D M, Zhao Q, Peng C et al.. Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1.  J Exp Med. 2009;  206(6) 1327-1337
  • 77 Dupuy A, Simon R M. Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting.  J Natl Cancer Inst. 2007;  99(2) 147-157
  • 78 Pepe M S, Etzioni R, Feng Z et al.. Phases of biomarker development for early detection of cancer.  J Natl Cancer Inst. 2001;  93(14) 1054-1061
  • 79 McShane L M, Altman D G, Sauerbrei W, Taube S E, Gion M, Clark G M. Statistics Subcommittee of the NCI-EORTC Working Group on Cancer Diagnostics . Reporting recommendations for tumor marker prognostic studies (REMARK).  J Natl Cancer Inst. 2005;  97(16) 1180-1184
  • 80 Bruix J, Sherman M. Practice Guidelines Committee, American Association for the Study of Liver Diseases . Management of hepatocellular carcinoma.  Hepatology. 2005;  42(5) 1208-1236
  • 81 Sherman M. Recurrence of hepatocellular carcinoma.  N Engl J Med. 2008;  359(19) 2045-2047
  • 82 Koike K. Hepatitis C virus contributes to hepatocarcinogenesis by modulating metabolic and intracellular signaling pathways.  J Gastroenterol Hepatol. 2007;  22(Suppl 1) S108-S111
  • 83 Coussens L M, Werb Z. Inflammation and cancer.  Nature. 2002;  420(6917) 860-867
  • 84 Pikarsky E, Porat R M, Stein I et al.. NF-kappaB functions as a tumour promoter in inflammation-associated cancer.  Nature. 2004;  431(7007) 461-466
  • 85 Bartosch B, Thimme R, Blum H E, Zoulim F. Hepatitis C virus-induced hepatocarcinogenesis.  J Hepatol. 2009;  51(4) 810-820
  • 86 Hoshida Y, Villanueva A, Llovet J M. Molecular profiling to predict hepatocellular carcinoma outcome.  Expert Rev Gastroenterol Hepatol. 2009;  3(2) 101-103
  • 87 Imamura H, Matsuyama Y, Tanaka E et al.. Risk factors contributing to early and late phase intrahepatic recurrence of hepatocellular carcinoma after hepatectomy.  J Hepatol. 2003;  38(2) 200-207
  • 88 Wu J C, Huang Y H, Chau G Y et al.. Risk factors for early and late recurrence in hepatitis B-related hepatocellular carcinoma.  J Hepatol. 2009;  51(5) 890-897
  • 89 Mazzaferro V, Romito R, Schiavo M HCC Italian Task Force et al. Prevention of hepatocellular carcinoma recurrence with alpha-interferon after liver resection in HCV cirrhosis.  Hepatology. 2006;  44(6) 1543-1554
  • 90 Bartel D P. MicroRNAs: genomics, biogenesis, mechanism, and function.  Cell. 2004;  116(2) 281-297
  • 91 Chen C Z. MicroRNAs as oncogenes and tumor suppressors.  N Engl J Med. 2005;  353(17) 1768-1771
  • 92 Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob S T, Patel T. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer.  Gastroenterology. 2007;  133(2) 647-658
  • 93 Fornari F, Gramantieri L, Ferracin M et al.. MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma.  Oncogene. 2008;  27(43) 5651-5661
  • 94 Zhang X, Liu S, Hu T, Liu S, He Y, Sun S. Up-regulated microRNA-143 transcribed by nuclear factor kappa B enhances hepatocarcinoma metastasis by repressing fibronectin expression.  Hepatology. 2009;  50(2) 490-499
  • 95 Wang Y, Lee A T, Ma J Z et al.. Profiling microRNA expression in hepatocellular carcinoma reveals microRNA-224 up-regulation and apoptosis inhibitor-5 as a microRNA-224-specific target.  J Biol Chem. 2008;  283(19) 13205-13215
  • 96 Hao-Xiang T, Qian W, Lian-Zhou C et al.. MicroRNA-9 reduces cell invasion and E-cadherin secretion in SK-Hep-1 cell.  Med Oncol. 2009;  , July 2 (Epub ahead of print)
  • 97 Ji J, Yamashita T, Budhu A et al.. Identification of microRNA-181 by genome-wide screening as a critical player in EpCAM-positive hepatic cancer stem cells.  Hepatology. 2009;  50(2) 472-480
  • 98 Viswanathan S R, Powers J T, Einhorn W et al.. Lin28 promotes transformation and is associated with advanced human malignancies.  Nat Genet. 2009;  41(7) 843-848
  • 99 Challen C, Guo K, Collier J D, Cavanagh D, Bassendine M F. Infrequent point mutations in codons 12 and 61 of ras oncogenes in human hepatocellular carcinomas.  J Hepatol. 1992;  14(2-3) 342-346
  • 100 Gramantieri L, Ferracin M, Fornari F et al.. Cyclin G1 is a target of miR-122a, a microRNA frequently down-regulated in human hepatocellular carcinoma.  Cancer Res. 2007;  67(13) 6092-6099
  • 101 Datta J, Kutay H, Nasser M W et al.. Methylation mediated silencing of MicroRNA-1 gene and its role in hepatocellular carcinogenesis.  Cancer Res. 2008;  68(13) 5049-5058
  • 102 Coulouarn C, Factor V M, Andersen J B, Durkin M E, Thorgeirsson S S. Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties.  Oncogene. 2009;  28(40) 3526-3536
  • 103 Furuta M, Kozaki K I, Tanaka S, Arii S, Imoto I, Inazawa J. miR-124 and miR-203 are epigenetically silenced tumor-suppressive microRNAs in hepatocellular carcinoma.  Carcinogenesis. 2009;  , October 20 (Epub ahead of print)
  • 104 Li S, Fu H, Wang Y et al.. MicroRNA-101 regulates expression of the v-fos FBJ murine osteosarcoma viral oncogene homolog (FOS) oncogene in human hepatocellular carcinoma.  Hepatology. 2009;  49(4) 1194-1202
  • 105 Su H, Yang J R, Xu T et al.. MicroRNA-101, down-regulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity.  Cancer Res. 2009;  69(3) 1135-1142
  • 106 Xu T, Zhu Y, Xiong Y, Ge Y Y, Yun J P, Zhuang S M. MicroRNA-195 suppresses tumorigenicity and regulates G1/S transition of human hepatocellular carcinoma cells.  Hepatology. 2009;  50(1) 113-121
  • 107 Li N, Fu H, Tie Y et al.. miR-34a inhibits migration and invasion by down-regulation of c-Met expression in human hepatocellular carcinoma cells.  Cancer Lett. 2009;  275(1) 44-53
  • 108 Ji J, Shi J, Budhu A et al.. MicroRNA expression, survival, and response to interferon in liver cancer.  N Engl J Med. 2009;  361(15) 1437-1447
  • 109 Lu J, Getz G, Miska E A et al.. MicroRNA expression profiles classify human cancers.  Nature. 2005;  435(7043) 834-838
  • 110 Kloosterman W P, Plasterk R H. The diverse functions of microRNAs in animal development and disease.  Dev Cell. 2006;  11(4) 441-450
  • 111 Rosenfeld N, Aharonov R, Meiri E et al.. MicroRNAs accurately identify cancer tissue origin.  Nat Biotechnol. 2008;  26(4) 462-469
  • 112 Volinia S, Calin G A, Liu C G et al.. A microRNA expression signature of human solid tumors defines cancer gene targets.  Proc Natl Acad Sci U S A. 2006;  103(7) 2257-2261
  • 113 Murakami Y, Yasuda T, Saigo K et al.. Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues.  Oncogene. 2006;  25(17) 2537-2545
  • 114 Ura S, Honda M, Yamashita T et al.. Differential microRNA expression between hepatitis B and hepatitis C leading disease progression to hepatocellular carcinoma.  Hepatology. 2009;  49(4) 1098-1112
  • 115 Ladeiro Y, Couchy G, Balabaud C et al.. MicroRNA profiling in hepatocellular tumors is associated with clinical features and oncogene/tumor suppressor gene mutations.  Hepatology. 2008;  47(6) 1955-1963
  • 116 Toffanin S, Lachenmayer A, Hoshida Y et al.. Identification of potential oncogenic microRNAs in a molecular subclass of hepatocellular carcinoma.  Hepatology. 2009;  50(4, suppl) 348A
  • 117 Gramantieri L, Fornari F, Ferracin M et al.. MicroRNA-221 targets Bmf in hepatocellular carcinoma and correlates with tumor multifocality.  Clin Cancer Res. 2009;  15(16) 5073-5081
  • 118 Li W, Xie L, He X et al.. Diagnostic and prognostic implications of microRNAs in human hepatocellular carcinoma.  Int J Cancer. 2008;  123(7) 1616-1622
  • 119 Jiang J, Gusev Y, Aderca I et al.. Association of microRNA expression in hepatocellular carcinomas with hepatitis infection, cirrhosis, and patient survival.  Clin Cancer Res. 2008;  14(2) 419-427
  • 120 Budhu A, Jia H L, Forgues M et al.. Identification of metastasis-related microRNAs in hepatocellular carcinoma.  Hepatology. 2008;  47(3) 897-907
  • 121 Nelson P T, Baldwin D A, Scearce L M, Oberholtzer J C, Tobias J W, Mourelatos Z. Microarray-based, high-throughput gene expression profiling of microRNAs.  Nat Methods. 2004;  1(2) 155-161
  • 122 Li J, Smyth P, Flavin R et al.. Comparison of miRNA expression patterns using total RNA extracted from matched samples of formalin-fixed paraffin-embedded (FFPE) cells and snap frozen cells.  BMC Biotechnol. 2007;  7 36
  • 123 Wang V, Wu W. MicroRNA-based therapeutics for cancer.  BioDrugs. 2009;  23(1) 15-23
  • 124 Kota J, Chivukula R R, O'Donnell K A et al.. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model.  Cell. 2009;  137(6) 1005-1017
  • 125 Ballestar E, Esteller M. Epigenetic gene regulation in cancer.  Adv Genet. 2008;  61 247-267
  • 126 Grønbaek K, Hother C, Jones P A. Epigenetic changes in cancer.  APMIS. 2007;  115(10) 1039-1059
  • 127 Nomoto S, Kinoshita T, Kato K et al.. Hypermethylation of multiple genes as clonal markers in multicentric hepatocellular carcinoma.  Br J Cancer. 2007;  97(9) 1260-1265
  • 128 Zhang C, Guo X, Jiang G et al.. CpG island methylator phenotype association with upregulated telomerase activity in hepatocellular carcinoma.  Int J Cancer. 2008;  123(5) 998-1004
  • 129 Zhang C, Li Z, Cheng Y et al.. CpG island methylator phenotype association with elevated serum alpha-fetoprotein level in hepatocellular carcinoma.  Clin Cancer Res. 2007;  13(3) 944-952
  • 130 Herath N I, Purdie D M, Kew M C et al.. Varying etiologies lead to different molecular changes in Australian and South African hepatocellular carcinomas.  Int J Oncol. 2009;  35(5) 1081-1089
  • 131 Harder J, Opitz O G, Brabender J et al.. Quantitative promoter methylation analysis of hepatocellular carcinoma, cirrhotic and normal liver.  Int J Cancer. 2008;  122(12) 2800-2804
  • 132 Shen L, Ahuja N, Shen Y et al.. DNA methylation and environmental exposures in human hepatocellular carcinoma.  J Natl Cancer Inst. 2002;  94(10) 755-761
  • 133 Oh B K, Kim H, Park H J et al.. DNA methyltransferase expression and DNA methylation in human hepatocellular carcinoma and their clinicopathological correlation.  Int J Mol Med. 2007;  20(1) 65-73
  • 134 Yu J, Ni M, Xu J et al.. Methylation profiling of twenty promoter-CpG islands of genes which may contribute to hepatocellular carcinogenesis.  BMC Cancer. 2002;  2 29
  • 135 Yang B, Guo M, Herman J G, Clark D P. Aberrant promoter methylation profiles of tumor suppressor genes in hepatocellular carcinoma.  Am J Pathol. 2003;  163(3) 1101-1107
  • 136 Shen L, Fang J, Qiu D et al.. Correlation between DNA methylation and pathological changes in human hepatocellular carcinoma.  Hepatogastroenterology. 1998;  45(23) 1753-1759
  • 137 Chan D W, Lee J M, Chan P C, Ng I O. Genetic and epigenetic inactivation of T-cadherin in human hepatocellular carcinoma cells.  Int J Cancer. 2008;  123(5) 1043-1052
  • 138 Yan Q, Zhang Z F, Chen X P et al.. Reduced T-cadherin expression and promoter methylation are associated with the development and progression of hepatocellular carcinoma.  Int J Oncol. 2008;  32(5) 1057-1063
  • 139 Takagi H, Sasaki S, Suzuki H et al.. Frequent epigenetic inactivation of SFRP genes in hepatocellular carcinoma.  J Gastroenterol. 2008;  43(5) 378-389
  • 140 Hanafusa T, Yumoto Y, Nouso K et al.. Reduced expression of insulin-like growth factor binding protein-3 and its promoter hypermethylation in human hepatocellular carcinoma.  Cancer Lett. 2002;  176(2) 149-158
  • 141 Calvisi D F, Ladu S, Gorden A et al.. Ubiquitous activation of Ras and Jak/Stat pathways in human HCC.  Gastroenterology. 2006;  130(4) 1117-1128
  • 142 Piao G H, Piao W H, He Y, Zhang H H, Wang G Q, Piao Z. Hyper-methylation of RIZ1 tumor suppressor gene is involved in the early tumorigenesis of hepatocellular carcinoma.  Histol Histopathol. 2008;  23(10) 1171-1175
  • 143 Wong C M, Lee J M, Ching Y P, Jin D Y, Ng I O. Genetic and epigenetic alterations of DLC-1 gene in hepatocellular carcinoma.  Cancer Res. 2003;  63(22) 7646-7651
  • 144 Yu A S, Keeffe E B. Management of hepatocellular carcinoma.  Rev Gastroenterol Disord. 2003;  3(1) 8-24
  • 145 Nishida N, Nagasaka T, Nishimura T, Ikai I, Boland C R, Goel A. Aberrant methylation of multiple tumor suppressor genes in aging liver, chronic hepatitis, and hepatocellular carcinoma.  Hepatology. 2008;  47(3) 908-918
  • 146 Saito Y, Kanai Y, Sakamoto M, Saito H, Ishii H, Hirohashi S. Expression of mRNA for DNA methyltransferases and methyl-CpG-binding proteins and DNA methylation status on CpG islands and pericentromeric satellite regions during human hepatocarcinogenesis.  Hepatology. 2001;  33(3) 561-568
  • 147 Lin C H, Hsieh S Y, Sheen I S et al.. Genome-wide hypomethylation in hepatocellular carcinogenesis.  Cancer Res. 2001;  61(10) 4238-4243
  • 148 Nishigaki M, Aoyagi K, Danjoh I et al.. Discovery of aberrant expression of R-RAS by cancer-linked DNA hypomethylation in gastric cancer using microarrays.  Cancer Res. 2005;  65(6) 2115-2124
  • 149 Calvisi D F, Ladu S, Gorden A et al.. Mechanistic and prognostic significance of aberrant methylation in the molecular pathogenesis of human hepatocellular carcinoma.  J Clin Invest. 2007;  117(9) 2713-2722
  • 150 Kondo Y, Shen L, Suzuki S et al.. Alterations of DNA methylation and histone modifications contribute to gene silencing in hepatocellular carcinomas.  Hepatol Res. 2007;  37(11) 974-983
  • 151 Zhang C, Li H, Zhou G et al.. Transcriptional silencing of the TMS1/ASC tumour suppressor gene by an epigenetic mechanism in hepatocellular carcinoma cells.  J Pathol. 2007;  212(2) 134-142
  • 152 Chang Q, Zhang Y, Beezhold K J et al.. Sustained JNK1 activation is associated with altered histone H3 methylations in human liver cancer.  J Hepatol. 2009;  50(2) 323-333
  • 153 Shon J K, Shon B H, Park I Y et al.. Hepatitis B virus-X protein recruits histone deacetylase 1 to repress insulin-like growth factor binding protein 3 transcription.  Virus Res. 2009;  139(1) 14-21
  • 154 Esteller M, Corn P G, Baylin S B, Herman J G. A gene hypermethylation profile of human cancer.  Cancer Res. 2001;  61(8) 3225-3229
  • 155 Cancer Genome Atlas Research Network . Comprehensive genomic characterization defines human glioblastoma genes and core pathways.  Nature. 2008;  455(7216) 1061-1068
  • 156 Gao W, Kondo Y, Shen L et al.. Variable DNA methylation patterns associated with progression of disease in hepatocellular carcinomas.  Carcinogenesis. 2008;  29(10) 1901-1910
  • 157 Lehmann U, Wingen L U, Brakensiek K et al.. Epigenetic defects of hepatocellular carcinoma are already found in non-neoplastic liver cells from patients with hereditary haemochromatosis.  Hum Mol Genet. 2007;  16(11) 1335-1342
  • 158 Yoo C B, Jones P A. Epigenetic therapy of cancer: past, present and future.  Nat Rev Drug Discov. 2006;  5(1) 37-50
  • 159 Sharma S, Kelly T K, Jones P A. Epigenetics in cancer.  Carcinogenesis. 2010;  31(1) 27-36
  • 160 Venturelli S, Armeanu S, Pathil A et al.. Epigenetic combination therapy as a tumor-selective treatment approach for hepatocellular carcinoma.  Cancer. 2007;  109(10) 2132-2141
  • 161 Prince H M, Bishton M J, Johnstone R W. Panobinostat (LBH589): a potent pan-deacetylase inhibitor with promising activity against hematologic and solid tumors.  Future Oncol. 2009;  5(5) 601-612
  • 162 Paez J G, Jänne P A, Lee J C et al.. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy.  Science. 2004;  304(5676) 1497-1500
  • 163 Marty M, Cognetti F, Maraninchi D et al.. Randomized phase II trial of the efficacy and safety of trastuzumab combined with docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer administered as first-line treatment: the M77001 study group.  J Clin Oncol. 2005;  23(19) 4265-4274
  • 164 Hughes T P, Kaeda J, Branford S International Randomised Study of Interferon versus STI571 (IRIS) Study Group et al. Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia.  N Engl J Med. 2003;  349(15) 1423-1432
  • 165 Hanahan D, Weinberg R A. The hallmarks of cancer.  Cell. 2000;  100(1) 57-70
  • 166 Roberts L R, Gores G J. Hepatocellular carcinoma: molecular pathways and new therapeutic targets.  Semin Liver Dis. 2005;  25(2) 212-225
  • 167 Breuhahn K, Longerich T, Schirmacher P. Dysregulation of growth factor signaling in human hepatocellular carcinoma.  Oncogene. 2006;  25(27) 3787-3800
  • 168 Berasain C, Castillo J, Prieto J, Avila M A. New molecular targets for hepatocellular carcinoma: the ErbB1 signaling system.  Liver Int. 2007;  27(2) 174-185
  • 169 Branda M, Wands J R. Signal transduction cascades and hepatitis B and C related hepatocellular carcinoma.  Hepatology. 2006;  43(5) 891-902
  • 170 Luo J, Solimini N L, Elledge S J. Principles of cancer therapy: oncogene and non-oncogene addiction.  Cell. 2009;  136(5) 823-837
  • 171 Naugler W E, Sakurai T, Kim S et al.. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production.  Science. 2007;  317(5834) 121-124
  • 172 Tanabe K K, Lemoine A, Finkelstein D M et al.. Epidermal growth factor gene functional polymorphism and the risk of hepatocellular carcinoma in patients with cirrhosis.  JAMA. 2008;  299(1) 53-60
  • 173 Li Y, Xie Q, Lu F et al.. Association between epidermal growth factor 61A/G polymorphism and hepatocellular carcinoma susceptibility in Chinese patients.  Liver Int. 2010;  30(1) 112-118
  • 174 Albini A, Sporn M B. The tumour microenvironment as a target for chemoprevention.  Nat Rev Cancer. 2007;  7(2) 139-147
  • 175 Kensler T W, Qian G S, Chen J G, Groopman J D. Translational strategies for cancer prevention in liver.  Nat Rev Cancer. 2003;  3(5) 321-329
  • 176 Wilhelm S M, Adnane L, Newell P, Villanueva A, Llovet J M, Lynch M. Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling.  Mol Cancer Ther. 2008;  7(10) 3129-3140
  • 177 Llovet J M, Di Bisceglie A M, Bruix J Panel of Experts in HCC-Design Clinical Trials et al. Design and endpoints of clinical trials in hepatocellular carcinoma.  J Natl Cancer Inst. 2008;  100(10) 698-711
  • 178 Philip P A, Mahoney M R, Allmer C et al.. Phase II study of Erlotinib (OSI-774) in patients with advanced hepatocellular cancer.  J Clin Oncol. 2005;  23(27) 6657-6663
  • 179 Thomas M B, Chadha R, Glover K et al.. Phase 2 study of erlotinib in patients with unresectable hepatocellular carcinoma.  Cancer. 2007;  110(5) 1059-1067
  • 180 Thomas M B, Morris J S, Chadha R et al.. Phase II trial of the combination of bevacizumab and erlotinib in patients who have advanced hepatocellular carcinoma.  J Clin Oncol. 2009;  27(6) 843-850
  • 181 Faivre S, Raymond E, Boucher E et al.. Safety and efficacy of sunitinib in patients with advanced hepatocellular carcinoma: an open-label, multicentre, phase II study.  Lancet Oncol. 2009;  10(8) 794-800
  • 182 Zhu A X, Sahani D V, Duda D G et al.. Efficacy, safety, and potential biomarkers of sunitinib monotherapy in advanced hepatocellular carcinoma: a phase II study.  J Clin Oncol. 2009;  27(18) 3027-3035
  • 183 Mínguez B, Tovar V, Chiang D, Villanueva A, Llovet J M. Pathogenesis of hepatocellular carcinoma and molecular therapies.  Curr Opin Gastroenterol. 2009;  25(3) 186-194
  • 184 Simon R. The use of genomics in clinical trial design.  Clin Cancer Res. 2008;  14(19) 5984-5993
  • 185 Hahn C K, Berchuck J E, Ross K N et al.. Proteomic and genetic approaches identify Syk as an AML target.  Cancer Cell. 2009;  16(4) 281-294

Josep M LlovetM.D. 

Mount Sinai Liver Cancer Program, Division of Liver Diseases

Mount Sinai School of Medicine, 1425 Madison Avenue, 11F-70, Box 1123, New York, NY 10029

Email: Josep.Llovet@mssm.edu

    >