Int J Sports Med 2010; 31(7): 511-515
DOI: 10.1055/s-0029-1243616
Clinical Sciences

© Georg Thieme Verlag KG Stuttgart · New York

Bone Status in Professional Cyclists

F. Campion1 , A. M. Nevill2 , M. K. Karlsson1 , J. Lounana3 , M. Shabani3 , P. Fardellone4 , J. Medelli3
  • 1Clinical and Molecular Osteoporosis Research Unit, Department of Clinical Sciences and Orthopaedic Surgery, Malmö University Hospital, Lund University, Malmö, Sweden
  • 2School of Sport, Performing Arts and Leisure, University of Wolverhampton, Walsall, West Midlands, UK
  • 3Department of Exercise Biology and Sports Medicine, University Hospital Nord, Amiens, France
  • 4Department of Rheumatology, University Hospital Nord, Amiens, France
Further Information

Publication History

accepted after revision November 18, 2009

Publication Date:
29 April 2010 (online)

Abstract

Professional cycling combines extensive endurance training with non weight-bearing exercise, two factors often associated with lower bone mineral density (BMD). Therefore BMD was measured with dual-energy x-ray absorptiometry in 30 professional road cyclists (mean (SD) age: 29.1 (3.4) years; height: 178.5 (6.7) cm; weight: 71.3 (6.1) kg; %fat mass: 9.7 (3.2)%; V˙O2max: 70.5 (5.5) ml·kg−1·min−1) and in 30 young healthy males used as reference (28.6 (4.5) years; 176.5 (6.3) cm; 73.4 (7.3) kg; 20.7 (5.8)%). Adjusting for differences in age, height, fat mass, lean body mass, and calcium intake by ANCOVA, professional cyclists had similar head BMD (p=0.383) but lower total body (1.135 (0.071) vs. 1.248 (0.104) g·cm−2; p<0.001), arms (0.903 (0.075) vs. 0.950 (0.085), p=0.028), legs (1.290 (0.112) vs. 1.479 (0.138); p<0.001), spine (0.948 (0.100) vs. 1.117 (0.147) g·cm−2; p<0.001), pelvis (1.054 (0.084) vs. 1.244 (0.142), p<0.001), lumbar spine (1.046 (0.103) vs. 1.244 (0.167), P<0.001), and femoral neck BMD (0.900 (0.115) vs. 1.093 (0.137), p<0.001) compared to reference subjects. Professional cycling appears to negatively affect BMD in young healthy and highly active males, the femoral neck being the most affected site (−18%) in spite of the elevated muscle contractions inherent to the activity.

References

  • 1 Ammann P, Rizzoli R. Bone strength and its determinants.  Osteoporos Int. 2003;  14 (S 03) 13-18
  • 2 Brahm H, Strom H, Piehl-Aulin K, Mallmin H, Ljunghall S. Bone metabolism in endurance trained athletes: a comparison to population-based controls based on DXA, SXA, quantitative ultrasound, and biochemical markers.  Calcif Tissue Int. 1997;  61 448-454
  • 3 Burrows M, Nevill AM, Bird S, Simpson D. Physiological factors associated with low bone mineral density in female endurance runners.  Br J Sports Med. 2003;  37 67-71
  • 4 Clark EM, Tobias JH, Ness A. Association between bone density and fractures in children: A systematic review and meta-analysis.  Pediatrics. 2003;  117 e291-e297
  • 5 Fardellone P, Sebert JL, Bouraya M, Bonidan O, Leclercq G, Doutrellot PL, Bellony R, Dubreuil A. Evaluation of the calcium content of diet by frequential self-questionnaire.  Rev Rhum Mal Osteoartic. 1991;  58 99-103
  • 6 Fiore CE, Dieli M, Vintaloro G, Gibilaro M, Giacone G, Cottini E. Body composition and bone mineral density in competitive athletes in different sports.  Int J Tissue React. 1996;  18 121-124
  • 7 Gärdsell P, Johnell O, Nilsson BE. The predictive value of forearm bone mineral content measurements in men.  Bone. 1990;  11 229-232
  • 8 Harris DJ, Atkinson G. International Journal of Sports Medicine - Ethical Standards in Sport and Exercise Science Research.  Int J Sports Med. 2009;  30 701-702
  • 9 Hetland ML, Haarbo J, Christiansen C. Low bone mass and high bone turnover in male long distance runners.  J Clin Endocrinol Metab. 1993;  77 770-775
  • 10 Hind K, Truscott JG, Evans JA. Low lumbar spine bone mineral density in both male and female endurance runners.  Bone. 2006;  39 880-885
  • 11 Jones G, Boon P. Which bone mass measures discriminate adolescents who have fractured from those who have not?.  Osteoporos Int. 2008;  19 251-255
  • 12 Kemmler W, Engelke K, Baumann H, Beeskow C, von Stengel S, Weineck J, Kalender WA. Bone status in elite male runners.  Eur J Appl Physiol. 2006;  96 78-85
  • 13 Lucia A, Pardo J, Durantez A, Hoyos J, Chicharro JL. Physiological differences between professional and elite road cyclists.  Int J Sports Med. 1998;  19 342-348
  • 14 MacDougall JD, Webber CE, Martin J, Ormerod S, Chesley A, Younglai EV, Gordon CL, Blimkie CJ. Relationship among running mileage, bone density, and serum testosterone in male runners.  J Appl Physiol. 1992;  73 1165-1170
  • 15 Mackey DC, Lui LY, Cawthon PM, Bauer DC, Nevitt MC, Cauley JA, Hillier TA, Lewis CE, Barrett-Connor E, Cummings SR. Study of Osteoporotic Fractures (SOF) and Osteoporotic Fractures in Men Study (MrOS) Research Groups. High-trauma fractures and low bone mineral density in older women and men.  JAMA. 2007;  298 2381-2388
  • 16 Maimoun L, Lumbroso S, Manetta J, Paris F, Leroux JL, Sultan C. Testosterone is significantly reduced in endurance athletes without impact on bone mineral density.  Horm Res. 2003;  59 285-292
  • 17 Medelli J, Lounana J, Menuet JJ, Shabani M, Cordero-Macintyre Z. Is osteopenia a health risk in professional cyclists?.  J Clin Densitom. 2009;  12 28-34
  • 18 Medelli J, Shabani M, Lounana J, Fardellone P, Campion F. Low bone mineral density and calcium intake in elite cyclists.  J Sports Med Phys Fitness. 2009;  49 44-53
  • 19 Melton 3rd LJ, Atkinson EJ, O'Connor MK, O'Fallon WM, Riggs BL. Bone density and fracture risk in men.  J Bone Miner Res. 1998;  13 1915-1923
  • 20 Myburgh KH, Hutchins J, Fataar AB, Hough SF, Noakes TD. Low bone density is an etiologic factor for stress fractures in athletes.  Ann Intern Med. 1990;  113 754-759
  • 21 Nevill A, Holder R, Stewart A. Do sporting activities convey benefits to bone mass throughout the skeleton?.  J Sports Sci. 2004;  22 645-650
  • 22 Nevill AM, Holder RL, Maffulli N, Cheng JC, Leung SS, Lee WT, Lau JT. Adjusting bone mass for differences in projected bone area and other confounding variables: an allometric perspective.  J Bone Miner Res. 2002;  17 703-708
  • 23 Nevill AM, Holder RL, Stewart AD. Modeling elite male athletes' peripheral bone mass, assessed using regional dual x-ray absorptiometry.  Bone. 2003;  32 62-68
  • 24 Nichols JF, Palmer JE, Levy SS. Low bone mineral density in highly trained male master cyclists.  Osteoporos Int. 2003;  14 644-649
  • 25 Optimal Calcium Intake.  NIH Consensus Statement. 1994;  12 1-31
  • 26 Rico H, Revilla M, Hernandez F, Gomez–Castresana F, Villa L. Bone mineral content and body composition in postpubertal cyclist boys.  Bone. 1993;  14 93-95
  • 27 Rivara FP, Thompson DC, Thompson RS. Epidemiology of bicycle injuries and risk factors for serious injury.  Inj Prev. 1997;  3 110-114
  • 28 Sabo D, Bernd L, Pfeil J, Reiter A. Bone quality in lumbar spine in high-performance athletes.  Eur Spine J. 1996;  5 258-263
  • 29 Smathers AM, Bemben MG, Bemben DA. Bone density comparisons in male competitive road cyclists and untrained controls.  Med Sci Sports Exerc. 2009;  41 290-296
  • 30 Stewart AD, Hannan J. Total and regional bone density in male runners, cyclists, and controls.  Med Sci Sports Exerc. 2000;  32 1373-1377
  • 31 Warner SE, Dalsky GP. Bone mineral density of elite male cyclists (Abstract).  Med Sci Sports Exerc. 1997;  29 S5
  • 32 Warner SE, Shaw JM, Dalsky GP. Bone mineral density of competitive male mountain and road cyclists.  Bone. 2002;  30 281-286

Correspondence

Dr. Frederic Campion

Clinical and Molecular

Osteoporosis Research Unit

Department of Clinical Sciences

and Orthopaedic Surgery

Lund University

Malmö University Hospital

SE-205 02 Malmö

Sweden

Phone: +4640331000

Fax: +4640336200

Email: fcampion@vo2max.org