Synlett 2010(7): 1075-1080  
DOI: 10.1055/s-0029-1219580
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of N-Arylisoindolin-1-ones via Pd-Catalyzed Intramolecular Decarbonylative Coupling of N-(2-Bromobenzyl)oxanilic Acid Phenyl Esters

Yu Zhenga, Gongli Yua, Jinlong Wua, Wei-Min Dai*a,b
a Laboratory of Asymmetric Catalysis and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. of China
Fax: +86(571)87953128; e-Mail: chdai@zju.edu.cn;
b Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, P. R. of China
Fax: +85223581594; e-Mail: chdai@ust.hk;
Further Information

Publication History

Received 23 December 2009
Publication Date:
10 March 2010 (online)

Abstract

Ethyl and phenyl oxanilates were readily prepared from N-(2-bromobenzyl)anilines and oxalyl chloride monoethyl and monophenyl esters, respectively. It was found that the ethyl oxanilate survived in the presence of K2CO3 in DMA at 120 ˚C and underwent an intramolecular direct arylation using Pd(OAc)2-dppf, furnishing the 5,6-dihydrophenanthridine derivative. In contrast, the corresponding phenyl oxanilates decomposed upon exposure to K2CO3 in DMA at 120 ˚C and were transformed into N-arylisoindolin-1-ones via Pd(OAc)2-dppf-catalyzed intramolecular decarbonylative coupling. Except for the 4-methoxy-substituted oxanilic acid phenyl ester, other phenyl oxanilates possessing electron-withdrawing (NO2, Cl) and weak electron-donating (Me) substituents provided the N-arylisoindolin-1-ones in 43-80% yields.

    References and Notes

  • 1 Baudoin O. Angew. Chem. Int. Ed.  2007,  46:  1373 
  • For selected examples of Heck reaction using aryl carboxylic acids, see:
  • 2a Myers AG. Tanaka D. Mannion MR. J. Am. Chem. Soc.  2002,  124:  11250 
  • 2b Tanaka D. Myers AG. Org. Lett.  2004,  6:  433 
  • 2c Tanaka D. Romeril SP. Myers AG. J. Am. Chem. Soc.  2005,  127:  10323 
  • 2d Hu P. Kan J. Su W. Hong M. Org. Lett.  2009,  11:  2341 
  • For selected examples of biaryl coupling reaction using aryl carboxylic acids, see:
  • 3a Gooβen LJ. Deng G. Levy LM. Science  2006,  313:  662 
  • 3b Forgione P. Brochu M.-C. St-Onge M. Thesen KH. Bailey MD. Bilodeau F. J. Am. Chem. Soc.  2006,  128:  11350 
  • 3c Goossen LJ. Rodriguez N. Melzer B. Linder C. Deng G. Levy LM. J. Am. Chem. Soc.  2007,  129:  4824 
  • 3d Becht J.-M. Catala C. Le Drian C. Wagner A. Org. Lett.  2007,  9:  1781 
  • 3e Gooβen LJ. Zimmermann B. Keauber T. Angew. Chem. Int. Ed.  2008,  47:  7103 
  • 3f Becht J.-M. Le Drian C. Org. Lett.  2008,  10:  3161 
  • 3g Shang R. Fu Y. Wang Y. Xu Q. Yu H.-Z. Liu L. Angew. Chem. Int. Ed.  2009,  48:  9250 
  • 3h Wang Z. Ding Q. He X. Wu J. Tetrahedron  2009,  65:  4635 
  • 3i Moon J. Jang M. Lee S. J. Org. Chem.  2009,  74:  1403 
  • See also:
  • 3j Duan Z. Ranjit S. Zhang P. Liu X. Chem. Eur. J.  2009,  15:  3666 
  • 3k Dicktein JS. Mulrooney CA. O’Brien EM. Morgan BJ. Kozlowski MC. Org. Lett.  2007,  9:  2441 
  • 4 Gooβen LJ. Rudolphi F. Oppel C. Rodríguez N. Angew. Chem. Int. Ed.  2008,  47:  3043 ; see also ref. 3e
  • 5 Merkul E. Oeser T. Müller TJJ. Chem. Eur. J.  2009,  15:  5006 
  • 6 Shang R. Fu Y. Li J.-B. Zhang S.-L. Guo Q.-X. Liu L. J. Am. Chem. Soc.  2009,  131:  5738 
  • For Cu-catalyzed reaction of zirconacyclopentenes with oxalyl chloride, see:
  • 7a Chen C. Xi C. Jiang Y. Hong X. J. Am. Chem. Soc.  2005,  127:  8024 
  • 7b Chen C. Liu Y. Xi C. Tetrahedron Lett.  2009,  50:  5434 
  • For selected recent examples, see:
  • 8a Lee S. Shinji C. Ogura K. Shimizu M. Maeda S. Sato M. Yoshida M. Hashimoto Y. Miyachi H. Bioorg. Med. Chem. Lett.  2007,  17:  4895 
  • 8b Hughes TV. Emanuel SL. O’Grady HR. Connolly PJ. Rugg C. Fuentes-Pesquera AR. Karnachi P. Alexander R. Middleton SA. Bioorg. Med. Chem. Lett.  2008,  18:  5130 
  • 8c Lawson EC. Luci DK. Ghosh S. Kinney WA. Reynolds CH. Qi J. Smith CE. Wang Y. Minor LK. Haertlein BJ. Parry TJ. Damiano BP. Maryanoff BE. J. Med. Chem.  2009,  52:  7432 
  • 9 Couture A. Deniau E. Lamblin M. Lorion M. Grandclaudon P. Synthesis  2007,  1434 
  • For examples of palladium-catalyzed carbonylative heteroannulation, see:
  • 10a Mori M. Chiba K. Ban Y.
    J. Org. Chem.  1978,  43:  1684 
  • 10b Shim SC. Jiang LH. Lee DY. Cho CS. Bull. Korean Chem. Soc.  1995,  16:  1064 
  • 10c Cho CS. Shim HS. Choi H.-J. Kim T.-J. Shim SC. Synth. Commun.  2002,  32:  1821 
  • 10d Grigg R. Zhang L. Collard S. Keep A. Tetrahedron Lett.  2003,  44:  6979 
  • 10e Grigg R. Gai X. Khamnaen T. Rajviroongit S. Sridharan V. Zhang L. Collard S. Keep A. Can. J. Chem.  2005,  83:  990 
  • 10f G rigg R. Sridharan V. Shah M. Mutton S. Kilner C. MacPherson D. Milner P.
    J. Org. Chem.  2008,  73:  8352 
  • 10g Orito K. Miyazawa M. Nakamura T. Horibata A. Ushito H. Nagasaki H. Yuguchi M. Yamashita S. Yamazaki T. Tokuda M.
    J. Org. Chem.  2006,  71:  5951 
  • 10h Cao H. McNamee L. Alper H. Org. Lett.  2008,  10:  5281 
  • 11 For addition of MeLi with imines, see: Strekowski L. Wydra RL. Cegla MT. Czarny A. Patterson S. J. Org. Chem.  1989,  54:  6120 
  • 12a Abdel-Magid AF. Carson KG. Harris BD. Maryanoff CA. Shah RD. J. Org. Chem.  1996,  61:  3849 
  • 12b Feng G. Wu J. Dai W.-M. Tetrahedron  2006,  62:  4635 
  • 12c Wu J. Nie L. Luo J. Dai W.-M. Synlett  2007,  2728 
  • 13 Mao CH. Wang QM. Huang RQ. Bi FC. Chen L. Liu YX. Shang J. J. Agric. Food Chem.  2004,  52:  6737 
  • 17 Pd(OAc)2-BINAP were used for catalyzing intramolecular amidation to form 2-oxindoles, see: Xing X. Wu J. Luo J. Dai W.-M. Synlett  2006,  2099 
  • For Pd-Aphos-catalyzed Suzuki-Miyaura coupling, see:
  • 18a Dai W.-M. Li Y. Zhang Y. Lai KW. Wu J. Tetrahedron Lett.  2004,  45:  1999 
  • 18b Dai W.-M. Zhang Y. Tetrahedron Lett.  2005,  46:  1377 
  • 18c Jin J. Chen Y. Li Y. Wu J. Dai W.-M. Org. Lett.  2007,  9:  2585 
  • 18d Dai W.-M. Li Y. Zhang Y. Yue C. Wu J. Chem. Eur. J.  2008,  14:  5538 
  • For Pd- and Ni-catalyzed oxidative cleavage of aryl esters, see:
  • 20a Gooβen LJ. Paetzold J. Angew. Chem. Int. Ed.  2002,  41:  1237 
  • 20b Li Z. Zhang S.-L. Fu Y. Guo Q.-X. Liu L. J. Am. Chem. Soc.  2009,  131:  8815 
14

Representative Procedure for Synthesis of Oxanilates 15 To a solution of phenol (235.0 mg, 2.0 mmol) and pyridine (0.31 mL, 3.0 mmol) in dry CH2Cl2 (5 mL) cooled in an ice-water bath was added oxalyl chloride (0.33 mL, 3.0 mmol) followed by stirring at r.t. for 30 min. The reaction mixture was evaporated, and hexane was added to the residue. The pyridinium salt was removed by quick filtration with washing by hexane. The combined filtrate was condensed under reduced pressure in a nitrogen atmosphere, and the crude oxalyl chloride monophenyl ester was used for next step without purification.¹³
To a separate dry flask was added NaH (60.0 mg, 1.5 mmol) and dry THF (5 mL). To the resultant suspension cooled in an ice-water bath was added a solution of 14e (276.0 mg, 1.0 mmol) in dry THF (5 mL). After stirring at the same temperature for 1 h, a solution of oxalyl chloride monophenyl ester prepared above in dry THF (5 mL) was added. After stirring at r.t. for 1 h, the reaction was quenched by H2O. The reaction mixture was extracted with EtOAc (3 × 15 mL), and the combined organic layer was washed with brine, dried over anhyd Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography over silica gel with elution by 10% EtOAc in PE (60-90 ˚C) to give the phenyl oxanilate 15e (367.0 mg, 87%). The results are listed in Table  [¹] .
Characterization Data for Compound 15e White crystalline solid; mp 92-93 ˚C (CH2Cl2-hexane); R f  = 0.59 (20% EtOAc in PE). IR (KBr): 1763, 1668, 1511, 1403, 1163 cm. ¹H NMR (400 MHz, CDCl3): δ = 7.52 (d, J = 8.0 Hz, 1 H), 7.45 (d, J = 7.6 Hz, 1 H), 7.31-7.25 (m, 3 H), 7.21-7.12 (m, 6 H), 6.67 (d, J = 7.6 Hz, 2 H), 5.16 (s, 2 H), 2.35 (s, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 161.4, 160.8, 149.4, 139.1, 136.5, 134.8, 132.9, 130.1 (3¥), 129.4 (2¥), 129.3, 127.8, 127.6 (2¥), 126.4, 123.8, 120.9 (2¥), 51.7, 21.1. MS (ESI+): m/z (%) = 448 (75) [M + 2 + Na+], 446 (100) [M + Na+]. Anal. Calcd for C22H18BrNO3: C, 62.28; H, 4.28; N, 3.30. Found: C, 62.31; H, 4.31; N, 3.37.

15

We used N,N-dimethylacetamide (DMA) as received from commercial supplies. The anhydrous grade has 99.8% purity with <0.005% water content. In all of our experiments described in this work, water was not added. Upon heating phenyl oxanilate 15a in DMA at 120 ˚C in the presence of K2CO3, all materials in the reaction mixture remained on the base line of the TLC plate while ethyl oxanilate 15j could be developed up on the TLC plate.

16

Representative Procedure for Formation of 16 and 17 A 10 mL flask was charged with Pd(OAc)2 (13.5 mg, 6.0¥10 mmol), dppf (33.0 mg, 6.0¥10 mmol), and K2CO3 (166.0 mg, 1.2 mmol). The loaded flask was evacuated and backfilled with N2 (repeated for three times). To the degassed flask was added a solution of phenyl oxanilate 15e (255.0 mg, 0.6 mmol) in degassed DMA (3 mL). The resultant mixture was heated at 120 ˚C for 2 h under a nitrogen atmosphere. After cooling to r.t., the reaction was quenched by adding CH2Cl2 (20 mL), and the resultant mixture was washing with H2O (3 × 10 mL) to remove DMA. The organic layer was washed with brine, dried over anhyd Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography over silica gel with elution by 20% EtOAc in PE (60-90 ˚C) to give N-(p-tolyl)isoindolin-1-one (17e, 61.0 mg, 46%). The results are given in Scheme  [³] and Table  [³] .
Compound 16 was prepared in 71% yield from 15j (Scheme  [³] ) under the same conditions as described above for 17e. The sample of 16 contains two atropisomers along with a minor inseparable debromination byproduct in the ratio of 75:15:10. The result was confirmed by independent synthesis as found in Supporting Information.
Characterization Data for Compound 16 Pale yellow oil; R f  = 0.27 (20% EtOAc in PE). IR (film): 2928, 1742, 1667, 1185 cm. ¹H NMR (400 MHz, CDCl3): δ = 7.83 (d, J = 7.2 Hz, 1 H), 7.81 (d, J = 8.0 Hz, 1 H), 7.43-7.19 (m, 6 H), 4.95 (s, 2 H), 4.16 (q, J = 6.8 Hz, 2 H), 1.12 (t, J = 7.2 Hz, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 162.5, 160.4, 135.6, 133.2, 131.1, 129.0, 128.4, 128.4, 128.1, 127.3, 126.4, 124.7, 123.5, 121.8, 62.1, 44.5, 13.6. MS (ESI+): m/z (%) = 304 (100) [M + Na+]. HRMS (ESI+): m/z calcd for C17H15NO3Na [M + Na+]: 304.0944; found: 304.0953.
Characterization Data for Compound 17e White crystalline solid; mp 126-128 ˚C (CH2Cl2-hexane). R f  = 0.38 (20% EtOAc in PE). IR (KBr): 2921, 1683, 1513, 1447, 1390, 1305, 1159 cm. ¹H NMR (400 MHz, CDCl3): δ = 7.92 (d, J = 7.2 Hz, 1 H), 7.74 (d, J = 8.4 Hz, 2 H), 7.60-7.48 (m, 3 H), 7.23 (d, J = 8.0 Hz, 2 H), 4.83 (s, 2 H), 2.35 (s, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 167.3, 140.1, 136.9, 134.2, 133.3, 131.9, 129.7 (2¥), 128.3, 124.1, 122.5, 119.6 (2¥), 50.8, 20.8. MS (ESI+): m/z (%) = 246 (35) [M + Na+], 224 (100) [M + H+]. Anal. Calcd for C15H13NO: C, 80.69; H, 5.87; N, 6.27. Found: C, 80.56; H, 5.79; N, 6.28.

19

Representative Procedure for Suzuki-Miyaura Coupling of Aryl Chlorides 17b,c A 10 mL flask was charged with the aryl chloride 17b (24.4 mg, 0.1 mmol), phenyl boronic acid (19.0 mg, 0.15 mmol), and K3PO4˙3H2O (80.0 mg, 0.3 mmol). The loaded flask was evacuated and backfilled with N2 (repeated for three times). To the degassed flask was added degassed H2O (0.1 mL) and a stock THF (1 mL) solution containing Pd(OAc)2 (0.23 mg, 1.0¥10 mmol) and Aphos (0.80 mg, 2.0¥10 mmol). The resultant mixture was heated at 60 ˚C for 24 h under a nitrogen atmosphere. After cooling to r.t., the reaction was quenched by H2O, and the resultant mixture was extracted with EtOAc (3 × 5 mL). The combined organic layer was washed with brine, dried over anhyd Na2SO4, filtrated, and concentrated under reduced pressure. The residue was purified by column chromatography over silica gel with elution by 15% EtOAc in PE (60-90 ˚C) to give the coupling product 18a (27.0 mg, 95%). The results are found in Scheme  [4] .
Characterization Data for Compound 18a White crystalline solid; mp 126-128 ˚C (CH2Cl2-hexane). R f  = 0.38 (20% EtOAc in PE). IR (KBr): 1691, 1600, 1483, 1429, 1376 cm. ¹H NMR (400 MHz, CDCl3): δ = 8.13 (dd, J = 2.0, 2.0 Hz, 1 H), 7.93 (d, J = 7.2 Hz, 1 H), 7.85 (dd, J = 8.4, 2.0 Hz, 1 H), 7.65 (d, J = 7.2 Hz, 2 H), 7.60 (ddd, J = 6.4, 6.4, 1.2 Hz, 1 H), 7.52 (d, J = 7.6 Hz, 2 H), 7.50 (d, J = 8.0 Hz, 1 H), 7.48-7.35 (m, 4 H), 4.90 (s, 2 H). ¹³C NMR (100 MHz, CDCl3): δ = 167.6, 142.2, 140.8, 140.0, 139.9, 133.1, 132.1, 129.5, 128.7 (2¥), 128.4, 127.5, 127.2 (2¥), 124.1, 123.2, 122.6, 118.2, 118.2, 50.8. MS (ESI+): m/z (%) = 308 (95) [M + Na+], 286 (100) [M + H+]. Anal. Calcd for C20H15NO: C, 84.19; H, 5.30; N, 4.91. Found: C, 84.22; H, 5.32; N, 4.96.