Synlett 2010(2): 294-298  
DOI: 10.1055/s-0029-1219166
CLUSTER
© Georg Thieme Verlag Stuttgart ˙ New York

Air-Stable Diaminophosphine Sulfides as Preligands for Nickel-Catalyzed Cross-Couplings of Unactivated Fluoro(hetero)arenes

Lutz Ackermann*, Cindy Wechsler, Anant R. Kapdi, Andreas Althammer
Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
Fax: +49(551)396777; e-Mail: Lutz.Ackermann@chemie.uni-goettingen.de;
Further Information

Publication History

Received 17 September 2009
Publication Date:
04 January 2010 (online)

Abstract

Air-stable secondary diaminophosphine sulfide preligands enable challenging nickel-catalyzed cross-coupling reactions of electron-deficient as well as electron-rich fluoro(hetero)arenes as electrophiles.

    References and Notes

  • 1 Amii H. Uneyama K. Chem. Rev.  2009,  109:  2119 
  • 2 Activating Unreactive Substrates   Bolm C. Hahn FE. Wiley-VCH; Weinheim: 2009. 
  • 3 Braun T. Perutz RN. Chem. Commun.  2002,  2749 
  • 4 Richmond TG. Angew. Chem. Int. Ed.  2000,  39:  3241 
  • 5 Richmond TG. Top. Organomet. Chem.  1999,  3:  243 
  • 6 Modern Arylation Methods   Ackermann L. Wiley-VCH; Weinheim: 2009. 
  • 7 Metal-Catalyzed Cross-Coupling Reactions   2nd ed.:  de Meijere A. Diederich F. Wiley-VCH; Weinheim: 2004. 
  • 8 Mueller K. Faeh C. Diederich F. Science  2007,  317:  1881 
  • For remarkable recent advance, see:
  • 9a Watson DA. Su M. Teverovskiy G. Zhang Y. García-Fortanet J. Kinzel T. Buchwald SL. Science  2009,  325:  1661 
  • 9b Douvris C. Ozerov OV. Science  2008,  321:  1188 ; and references cited therein
  • For recent representative studies on catalyzed functionali-zations of C-F bonds with metals other than nickel, see:
  • 10a Braun T. Salomon MA. Altenhoner K. Teltewskoi M. Hinze S. Angew. Chem. Int. Ed.  2009,  48:  1818 
  • 10b Gu W. Haneline MR. Douvris C. Ozerov OV. J. Am. Chem. Soc.  2009,  131:  11203 
  • 10c Reade SP. Mahon MF. Whittlesey MK. J. Am. Chem. Soc.  2009,  131:  1847 
  • 10d Meier G. Braun T. Angew. Chem. Int. Ed.  2009,  48:  1546 
  • 10e Buckley HL. Wang T. Tran O. Love JA. Organometallics  2009,  28:  2356 
  • 10f Nova A. Erhardt S. Jasim NA. Perutz RN. Macgregor SA. McGrady JE. Whitwood AC. J. Am. Chem. Soc.  2008,  130:  15499 
  • 10g Erhardt S. Macgregor SA. J. Am. Chem. Soc.  2008,  130:  15490 
  • 10h Manabe K. Ishikawa S. Synthesis  2008,  2645 
  • 10i Wang T. Alfonso BJ. Love JA. Org. Lett.  2007,  9:  5629 
  • 10j Korn TJ. Schade MA. Cheemala MN. Wirth S. Guevara SA. Cahiez G. Knochel P. Synthesis  2006,  5347 ; and references cited therein
  • 11 Corriu RJP. Masse JP. J. Chem. Soc., Chem. Commun.  1972,  144 
  • 12 Tamao K. Sumitani K. Kumada M. J. Am. Chem. Soc.  1972,  94:  4374 
  • 13 Littke AF. In Modern Arylation Methods   Ackermann L. Wiley-VCH; Weinheim: 2009.  p.25 
  • For examples of nickel-catalyzed cross-coupling reactions between aryl fluorides and boronic acids, see:
  • 14a Schaub T. Backes M. Radius U. J. Am. Chem. Soc.  2006,  128:  15964 
  • 14b See also: Schaub T. Fischer P. Steffen A. Braun T. Radius U. Mix A. J. Am. Chem. Soc.  2008,  130:  9304 
  • For representative examples, see:
  • 15a Hatekeyama T. Hashimoto S. Ishizuka K. Nakamura M. J. Am. Chem. Soc.  2009,  131:  11949 
  • 15b Yoshikai N. Matsuda H. Nakamura E. J. Am. Chem. Soc.  2009,  131:  9590 
  • 15c Saeki T. Takashima Y. Tamao K. Synlett  2005,  1771 
  • 15d Yoshikai N. Mashima H. Nakamura E. J. Am. Chem. Soc.  2005,  127:  17978 
  • 15e Dankwardt JW. J. Organomet. Chem.  2005,  690:  932 
  • 15f Böhm VPW. Gstöttmayr CWK. Weskamp T. Herrmann WA. Angew. Chem. Int. Ed.  2001,  40:  3387 
  • 15g Tamao K. Sumitani K. Kiso Y. Zembayashi M. Fujioka A. Kodama S. Nakajama I. Minato A. Kumada M. Bull. Chem. Soc. Jpn.  1976,  49:  1958 
  • 15h Kiso Y. Tamao K. Kumada M. J. Organomet. Chem.  1973,  50:  C12 ; and references cited therein
  • 16 Ackermann L. Synlett  2007,  507 
  • 17 Ackermann L. Synthesis  2006,  1557 
  • 18 Nemoto T. Hamada Y. Chem. Rec.  2007,  7:  150 
  • Representative examples of HASPO preligands in catalyzed cross-coupling chemistry from our laboratories:
  • 19a Ackermann L. Potukuchi HK. Synlett  2009,  2852 
  • 19b Ackermann L. Barfüßer S. Synlett  2009,  808 
  • 19c Ackermann L. Mulzer M. Org. Lett.  2008,  10:  5043 
  • 19d Ackermann L. Althammer A. Born R. Angew. Chem. Int. Ed.  2006,  45:  2619 
  • 19e Ackermann L. Spatz JH. Gschrei CJ. Born R. Althammer A. Angew. Chem. Int. Ed.  2006,  45:  7627 
  • 19f Ackermann L. Gschrei CJ. Althammer A. Riederer M. Chem. Commun.  2006,  1419 
  • 19g Ackermann L. Althammer A. Org. Lett.  2006,  8:  3457 
  • 19h Ackermann L. Org. Lett.  2005,  7:  3123 
  • 20 Ackermann L. Born R. Spatz JH. Meyer D. Angew. Chem. Int. Ed.  2005,  44:  7216 
  • 21 Ackermann L. Althammer A. Chem. Unserer Zeit  2009,  43:  74 
  • 22 Ackermann L. Born R. Spatz JH. Althammer A. Gschrei CJ. Pure Appl. Chem.  2006,  78:  209 
  • 23 For an example of a secondary phosphine sulfide preligand in a cross-coupling of aryl chlorides, see: Li GW. Marshall WJ. Organometallics  2002,  21:  590 
24

Synthesis of 1,3-Bis-(2,6-diisopropylphenyl)[1,3,2]-diazaphospholane-2-sulfide (2)
1,3-Bis-(2,6-diisopropylphenyl)[1,3,2]diazaphospholane-2 oxide (3.06 g, 7.17 mmol) and Lawesson’s reagent (2.90 g, 7.17 mmol) were stirred in PhMe (25 mL) for 3 h at 110 ˚C. At ambient temperature, the reaction mixture was filtered, and the solvent was removed in vacuo. The remaining residue was purified by column chromatography (n-hexane-EtOAC = 4:1) to yield 2 (2.40 g, 76%) as a colorless solid (mp 189-191 ˚C). ¹H NMR (300 MHz, CDCl3): δ = 8.65 (d, J = 562.5 Hz, 1 H), 7.31 (t, J = 7.3 Hz, 2 H), 7.21 (dd, J = 7.7, 1.6 Hz, 2 H), 7.16-7.04 (m, 2 H), 3.67 (sept, J = 6.9 Hz, 6 H), 3.29 (sept, J = 6.7 Hz, 2 H), 1.37 (d, J = 6.7 Hz, 6 H), 1.32 (d, J = 7.1 Hz, 6 H), 1.29 (d, J = 7.5 Hz, 6 H), 1.28 (d, J = 7.1 Hz, 6 H). ¹³C NMR (75 MHz, CDCl3): δ = 150.2 (Cq), 148.8 (Cq), 133.4 (Cq, J= 5.0 Hz), 128.4 (CH), 124.7 (CH), 123.8 (CH), 50.4 (CH2), 50.3 (CH2), 29.1 (CH), 28.8 (CH), 25.8 (CH3), 25.0 (CH3), 24.8 (CH3), 24.4 (CH3). ³¹P NMR (121 MHz, CDCl3): δ = 47.65. IR (KBr): 2962, 2926, 2867, 2306, 1464, 1448, 1382, 1323, 1261, 1086, 984, 762 cm. MS (EI): m/z (%) = 442 (2) [M+], 409 (100), 221 (2), 191 (13), 160 (3), 132 (4), 43 (6). ESI-HRMS: m/z calcd for C26H40N2PS [M + H+]: 443.2650; found: 443.2644.

25

Synthesis of 5a (Table 1, Entry 9); Typical Procedure
[Ni(acac)2] (7 mg, 0.03 mmol, 3.0 mol%) and 2 (13 mg, 0.03 mmol, 3.0 mol%) were stirred in THF (2.0 mL) for 10 min at ambient temperature under N2. Compound 3d (126 mg, 1.00 mmol) was added, and the solution was stirred for additional 5 min. Thereafter, 4d (1.75 M in THF, 0.85 mL, 1.50 mmol) was added, and the resulting solution was stirred for 21 h at ambient temperature. EtOAc (75 mL) and H2O (75 mL) were added, and the separated aqueous phase was extracted with EtOAc (2 × 75 mL). The combined organic layers were dried over MgSO4 and concentrated in vacuo. The remaining residue was purified by column chromatog-raphy on silica gel (n-hexane-EtOAc, 300:1 → 200:1 → 150:1 → 100:1) to yield 5a (160 mg, 87%) as a colorless solid (mp 88-89 ˚C). ¹H NMR (300 MHz, CDCl3): δ = 7.61-7.51 (m, 4 H), 7.40 (md, J = 8.1 Hz, 2 H), 7.3 (d, J = 7.4 Hz, 1 H), 6.96 (md, J = 8.9 Hz, 2 H), 3.87 (s, 3 H). ¹³C NMR (75 MHz, CDCl3): δ = 159.1 (Cq), 140.8 (Cq), 133.7 (Cq), 128.7 (CH), 128.1 (CH), 126.7 (CH), 126.6 (CH), 114.2 (CH), 55.3 (OCH3). IR (KBr): 2929, 2839, 1611, 1519, 1487, 1044, 836, 571, 438, 411 cm. MS (EI): m/z (%) = 184 (100) [M+], 169 (35), 141 (24), 115 (12), 92 (2), 76 (2), 63 (2). ESI-HRMS: m/z calcd for C13H12O: 184.0888; found: 184.0881. The spectral data are in accordance with those reported in the literature.²0

26

Analytical Data
2-Methyl-6-(4-methoxyphenyl)quinoline (5n)
Mp 117-118 ˚C. ¹H NMR (300 MHz, CDCl3): δ = 8.04 (d, J = 8.3 Hz, 2 H), 7.93-7.34 (m, 2 H), 7.63 (md, J = 8.9 Hz, 2 H), 7.26 (d, J = 8.5 Hz, 1 H), 7.00 (md, J = 8.9 Hz, 2 H), 3.84 (s, 3 H), 2.73 (s, 3 H). ¹³C NMR (75 MHz, CDCl3): δ = 159.3 (Cq), 158.6 (Cq), 147.0 (Cq), 138.0 (Cq), 136.2 (CH), 132.9 (Cq), 128.9 (CH), 128.9 (CH), 128.3 (Cq), 126.7 (CH), 124.4 (CH), 122.3 (CH), 114.3 (CH), 55.3 (OCH3), 25.3 (CH3). IR (KBr): 2964, 2925, 1599, 1521, 1492, 1285, 1260, 1243, 1191, 1036, 829 cm. MS (EI): m/z (%) = 249 (100) [M+], 234 (36), 206 (30), 124 (6), 103 (5), 51 (2). ESI-HRMS: m/z calcd for C17H16NO [M + H+]: 250.1232; found: 250.1226.


2-Methyl-6-(4-methylphenyl)quinoline (5o)
Mp 120-121 ˚C. ¹H NMR (300 MHz, CDCl3): δ = 8.10-8.02 (m, 2 H), 7.96-7.88 (m, 2 H), 7.59 (md, J = 8.2 Hz, 2 H), 7.27 (md, J = 8.4 Hz, 3 H), 2.74 (s, 3 H), 2.40 (s, 3 H). ¹³C NMR (75 MHz, CDCl3): δ = 158.8 (Cq), 147.1 (Cq), 138.3 (Cq), 137.5 (Cq), 137.3 (Cq), 136.2 (CH), 129.6 (CH), 129.0 (CH), 128.9 (CH), 127.1 (CH), 126.6 (Cq), 124.8 (CH), 122.3 (CH), 25.4 (CH3), 21.1 (CH3). IR (KBr): 2917, 2854, 1619, 1598, 1563, 1518, 1492, 1391, 1313, 1013, 892, 816 cm. MS (EI): m/z (%) = 233 (100) [M+], 217 (3), 189 (2), 116 (4). ESI-HRMS: m/z calcd for C17H16N [M + H+]: 234.1282; found: 234.1277.
2-Methyl-6-(2-methylphenyl)quinoline (5p)
¹H NMR (300 MHz, CDCl3): δ = 8.03 (d, J = 7.7 Hz, 2 H), 7.71-7.58 (m, 2 H), 7.34-7.21 (m, 5 H), 2.76 (s, 3 H), 2.29 (s, 3 H). ¹³C NMR (75 MHz, CDCl3): δ = 158.9 (Cq), 146.8 (Cq), 141.2 (Cq), 139.4 (Cq), 136.2 (CH), 135.5 (Cq), 131.2 (CH), 130.4 (CH), 129.9 (CH), 128.1 (CH), 127.5 (CH), 127.3 (CH), 126.2 (Cq), 125.8 (CH), 122.2 (CH), 25.4 (CH3), 20.5 (CH3). IR (KBr): 2952, 2920, 1600, 1561, 1487, 1454, 1373, 1312, 841, 815, 757, 726 cm. MS (EI): m/z (%) = 233 (100) [M+], 218 (11), 189 (6), 165 (3), 115 (6), 91 (2), 63 (2). ESI-HRMS: m/z calcd for C17H16N [M + H+]: 234.1277; found: 234.1281.
2-Methyl-6-(2,4,6-trimethylphenyl)quinoline (5q)
¹H NMR (300 MHz, CDCl3): δ = 8.04 (d, J = 9.1 Hz, 1 H), 8.02 (d, J = 8.7 Hz, 1 H), 7.52 (d, J = 1.8 Hz, 1 H), 7.45 (dd, J = 8.4, 1.8 Hz, 1 H), 7.29 (d, J = 8.4 Hz, 1 H), 6.96 (s, 2 H), 2.76 (s, 3 H), 2.31 (s, 3 H), 2.00 (s, 6 H). ¹³C NMR (75 MHz, CDCl3): δ = 158.8 (Cq), 146.8 (Cq), 138.6 (Cq), 138.2 (Cq), 136.9 (Cq), 136.1 (Cq), 136.0 (CH), 131.5 (CH), 128.6 (CH), 128.1 (CH), 127.4 (CH), 126.5 (Cq), 122.1 (CH), 25.3 (CH3), 21.0 (CH3), 20.8 (CH3). IR (KBr): 2949, 2917, 2856, 1599, 1563, 1483, 1375, 1309, 1259, 1221, 842, 812 cm. MS (EI): m/z (%) = 261 (100) [M+], 246 (42), 231 (9), 143 (83), 128 (10), 115 (13), 85 (23), 57 (26), 43 (33). ESI-HRMS: m/z calcd C19H20N [M + H+]: 262.1595; found: 262.1590.