Synthesis 2010(6): 947-952  
DOI: 10.1055/s-0029-1218625
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of Divinylsulfides

Jan Paradies*
Department of Organic Chemistry, University of Karlsruhe (TH), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
Fax: +49(721)6088581; e-Mail: jan.paradies@ioc.uka.de;
Further Information

Publication History

Received 19 October 2009
Publication Date:
04 January 2010 (online)

Abstract

Arylacetylenes react with sodium sulfide in the presence of water to yield divinylsulfides. The reaction proceeds in good to excellent yield for both electron-neutral and electron-deficient aromatic systems; for electron-rich aryls, longer reaction times are necessary. The sulfides represent useful substrates for further transformations, for example, oxidation to the corresponding divinylsulfoxides and divinylsulfones. Three selected divinylsulfide derivatives were oxidized selectively to the corresponding sulfoxides or sulfones.

    References

  • 1a Metzner P. Thiuillier A. Sulfur Reagents in Organic Chemistry   Academic Press; San Diego: 1994. 
  • 1b Mikolajczk M. Drabowicz J. Kielbasinski P. Chiral Sulfur Reagents   CRC Press; New York: 1996. 
  • 1c Kagan HB. Diter B. Synthetic and Stereochemical Aspects, In Organosulfur Chemistry   Vol. 2:  Page PCB. Academic Press; London: 1998.  p.1 
  • 1d Bolm C. Toru T. Organosulfur Chemistry in Asymmetric Synthesis   Wiley-VCH; Weinheim: 2008. 
  • 2a Pitchen P. Dunach E. Deshmukh MN. Kagan HB. J. Am. Chem. Soc.  1984,  106:  8188 
  • 2b Kagan HB. Dunach E. Nemecek C. Pitchen P. Samuel O. Zhao SH. Pure Appl. Chem.  1985,  57:  1911 
  • 2c Brunel J.-M. Diter P. Duetsch M. Kagan HB. J. Org. Chem.  1995,  60:  8086 
  • 2d Bolm C. Bienewald F. Angew. Chem. Int. Ed. Engl.  1995,  34:  2640 ; Angew. Chem. 1995, 107, 2883
  • 2e Delouvrie B. Fensterbank L. Najera F. Malacria M. Eur. J. Org. Chem.  2002,  3507 
  • 2f Aggarwal VK. Steele RM. Ritmaleni . Barrell JK. Grayson I. J. Org. Chem.  2003,  68:  4087 
  • 3a For some reviews, see: Zimmerman HE. Thyagarajan BS. J. Am. Chem. Soc.  1960,  82:  2505 
  • 3b Block E. Reactions of Organosulfur Compounds   Academic Press; New York: 1978. 
  • 3c Stowell JC. Carbanions in Organic Synthesis   Wiley; New York: 1979. 
  • 3d Solladie G. Zimmermann R. Bartsch R. Tetrahedron Lett.  1983,  24:  755 
  • 3e Wolfe S. Sulfur-Containing Carbanions and Related Species, In Studies in Organic Chemistry   Vol. 19:  Bemardi F. Csizmadia IG. Mangini A. ; Amsterdam: 1985.  p.133 
  • 4 Paquette LA. Synlett  2001,  1 
  • 5 Gusarova NK. Voronkov MG. Trofimov BA. J. Sulfur Chem.  1989,  9:  95 
  • 6a Yamamura H. Kleffel D. Blount JF. Hunkler D. Todaro LJ. Otto HH. Liebigs Ann.  1984,  5:  1013 
  • 6b Yamamura H. Kleffel D. Grossmann S. Otto HH. Arch. Pharm.  1985,  318:  280 
  • 6c Potapov VA. Amosova SV. Doron’kina IV. Korsun OV. J. Organomet. Chem.  2003,  674:  104 
  • 6d Gusarova NK. Yas’ko SV. Chernysheva NA. Korchevin NA. Trofimov BA. Russ. J. Gen. Chem.  2008,  78:  678 
  • 7 Gusarova NK. Bogdanova MV. Ivanova NI. Chernysheva NA. Tatarinova AA. Trofimov BA. Russ. J. Gen. Chem.  2006,  76:  1201 
  • 8a Otto HH. Yamamura H. Arch. Pharm.  1975,  308:  768 
  • 8b Otto HH. Yamamura H. Liebigs Ann.  1977,  9:  1500 
  • 8c Reddy DB. Muralidhar M. Padmavathi V. Vijayalakshmi S. Indian J. Heterocycl. Chem.  1995,  4:  259 
  • 9a Naidu MSR. Rani RM. Phosphorus Sulfur  1984,  19:  259 
  • 9b Reddy DB. Reddy PVR. Padmavathi V. Phosphorus Sulfur  1994,  90:  1 
  • 10a Reddy DB. Padmavathi V. Reddy S. Reddy MVR. Sulfur Lett.  1991,  13:  123 
  • 10b Padmavathi V. Reddy KV. Balaiah A. Reddy TVR. Reddy DB. Heteroat. Chem.  2002,  13:  677 
  • 11 Dimroth K. Follmann H. Pohl G. Chem. Ber.  1966,  99:  642 
  • 12 Carson JF. Boggs LE. J. Org. Chem.  1967,  32:  673 
  • 13a Diederich F. Stang PJ. Tykwinski RR. Acetylene Chemistry: Chemistry, Biology, and Material Science   Wiley-VCH; Weinheim: 2005. 
  • 13b Trofimov BA. Gusarova NK. Russ. Chem. Rev.  2007,  76:  507 
  • 14a Trofimov BA. Amosova SV. Alpert ML. Skatova NN. Russ. J. Org. Chem.  1977,  13:  2229 
  • 14b Vasiltsov AM. Trofimov BA. Amosova SV. Voronov VK. Russ. Chem. Bull.  1982,  31:  2155 
  • 14c Trofimov BA. Amosova SV. Sulfur Rep.  1984,  3:  323 
  • 14d Vasiltsov AM. Amosova SV. Trofimov BA. Russ. Chem. Bull.  1985,  34:  1350 
  • 18 Kissane M. Lynch D. Chopra J. Lawrence SE. Maguire AR. Tetrahedron: Asymmetry  2008,  19:  1256 
  • 19 Yamamura H. Otto HH. Arch. Pharm.  1978,  311:  762 
  • 20 Uhlig E. Borek B. Ngu LM. Z. Anorg. Allg. Chem.  1977,  432:  33 
  • 21 Tsuchiya T. Shimizu T. Kamigata N. J. Am. Chem. Soc.  2001,  123:  11534 
15

The addition of 3 and 4 equivalents of water did not furnish better yields but resulted in the formation of more side products.

16

When the reaction was performed with a more activated alkyne, such as 2-pyridyl-acetylene in DMF, the major product was the addition product of dimethylamine to the double bond.

17

When the reaction was performed with more activated alkynes, such as 4-acetyl- or 4-cyanophenylacetylene at -20 ˚C, 0 ˚C and room temperature, the only reaction products obtained were oligomeric and polymeric material.