Synlett 2010(2): 256-260  
DOI: 10.1055/s-0029-1218562
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Modified Cinchona Alkaloid-Zinc Complex Catalysts: Enantioselective Monoacetylation of Glycerol Derivatives with Acetic Anhydride

Shigeki Sano*, Takeshi Tsumura, Noriaki Tanimoto, Takashi Honjo, Michiyasu Nakao, Yoshimitsu Nagao
Graduate School of Pharmaceutical Sciences, The University of Tokushima, Sho-machi, Tokushima 770-8505, Japan
Fax: +81(88)6339503; e-Mail: ssano@ph.tokushima-u.ac.jp;
Further Information

Publication History

Received 23 October 2009
Publication Date:
10 December 2009 (online)

Abstract

Enantioselective monoacetylation of σ-symmetric glycerol derivatives with acetic anhydride catalyzed by modified cinchona alkaloid-zinc complexes was achieved in up to 86% ee at 5 mol% catalyst loading.

9

The ¹H NMR spectra of a mixture of chiral ligand 1 and Et2Zn were complicated by multiple signals arising from rotamers of 1. In the case of our previous results, the structure of chiral sulfonamide-Zn complex (2:1) was determined by X-ray crystallographic analysis.5 However, attempts to crystallize the Zn complex of chiral ligand 1 were unsuccessful.

11

The authors reported the experimental results at the 126th annual meeting of the Pharmaceutical Society of Japan, Sendai, Japan, 2006, abstract No. 4, pp. 137.

14

General Experimental Procedure for a Modified Cinchona Alkaloid-Zinc Complex Catalyzed Desymmetrization of Glycerol Derivatives
To a solution of modified cinchona alkaloid 1 (6.0 mg, 0.01 mmol) in Et2O (4 mL) was added Et2Zn (1.0 M in n-hexane, 10 µL, 0.01 mmol) at r.t. The mixture was stirred at r.t. for 10 min, and diol 9a (51.3 mg, 0.2 mmol) and Ac2O (28 µL, 0.3 mmol) were then added to the solution at 0 ˚C. After stirring at 0 ˚C for 20 h, the reaction mixture was treated with sat. aq NaHCO3 (5 mL) followed by extraction with CHCl3 (75 mL). The extract was dried over anhyd MgSO4, filtered, and concentrated in vacuo. The oily residue was purified by silica gel column chromatography (EtOAc-n-hexane, 1:1) to afford 9aa (46.3 mg, 78% yield, 86% ee) as a colorless oil.
The ee (%) of (S)-9aa (Scheme  [²] ) was determined on a Chiralpak IA, n-hexane-EtOH (3:1), flow rate: 1 mL/min, detection: 254 nm]. The retention times were 9.4 min [minor product, (R)-9aa] and 12.2 min [major product, (S)-9aa], respectively. The absolute configuration of (S)-9aa was explicitly determined by its chemical conversion to acetonide (S)-15 {[α]D ²0 -3.1 (c 1.01, EtOH), lit.¹6 (R)-15 [α]D +5.8 (c 1.00, EtOH)}.

Scheme 2

15

Spectroscopic Data of 9aa-ea (Table 4)
Compound 9aa (R = Me): colorless oil. ¹H NMR (400 MHz, CDCl3): δ = 1.28 (3 H, s), 2.10 (3 H, s), 2.15 (1 H, s), 3.56-3.59 (2 H, m), 3.79 (6 H, s), 4.17 (1 H, d, J = 11.7 Hz), 4.24 (1 H, d, J = 11.7 Hz), 4.48 (2 H, s), 6.38 (1 H, t, J = 2.2 Hz), 6.49 (2 H, d, J = 2.2 Hz). ¹³C NMR (75 MHz, CDCl3): δ = 17.5, 20.9, 55.3, 64.6, 65.4, 65.7, 76.8, 99.4, 105.2, 141.1, 160.9, 171.1. IR (neat): 3471, 2939, 2843, 1738, 1599, 1464, 1244, 1205, 1155, 1053 cm. ESI-MS: m/z calcd for C15H22NaO6: 321.1314; found: 321.1324 [M+ + Na].
Compound 9ba (R = Et): colorless oil. ¹H NMR (400 MHz, CDCl3): δ = 0.96 (3 H, t, J = 7.7 Hz), 1.60-1.72 (2 H, m), 2.10 (3 H, s), 2.21 (1 H, s), 3.57 (1 H, d, J = 12.0 Hz), 3.62 (1 H, d, J = 12.0 Hz), 3.79 (6 H, s), 4.20 (1 H, d, J = 11.7 Hz), 4.25 (1 H, d, J = 11.7 Hz), 4.45 (2 H, s), 6.37 (1 H, t, J = 2.2 Hz), 6.51 (2 H, d, J = 2.2 Hz). ¹³C NMR (75 MHz, CDCl3): δ = 7.0, 20.9, 22.6, 55.3, 62.8, 63.6, 63.9, 78.6, 99.4, 105.2, 141.0, 160.9, 171.2. IR (neat): 3481, 2968, 1741, 1599, 1462, 1238, 1205, 1155, 1063 cm. ESI-MS: m/z calcd for C16H24NaO6: 335.1471; found: 335.1471 [M+ + Na].
Compound 9ca (R = i-Pr): colorless oil. ¹H NMR (400 MHz, CDCl3): δ = 1.01 (3 H, d, J = 3.2 Hz), 1.03 (3 H, d, J = 3.2 Hz), 2.07-2.10 (4 H, m), 2.17-2.25 (1 H, m), 3.73-3.76 (2 H, m), 3.79 (6 H, s), 4.34 (1 H, d, J = 12.2 Hz), 4.36 (1 H, d, J = 12.2 Hz), 4.52 (1 H, d, J = 11.5 Hz), 4.54 (1 H, d, J = 11.5 Hz), 6.38 (1 H, t, J = 2.2 Hz), 6.52 (2 H, d, J = 2.2 Hz). ¹³C NMR (75 MHz, CDCl3): δ = 17.06, 17.13, 21.0, 30.1, 55.3, 62.6, 64.5, 64.6, 79.7, 99.3, 105.0, 141.4, 160.9, 171.0. IR (neat): 3483, 2964, 1741, 1599, 1238, 1205, 1155, 1055 cm. ESI-MS: m/z calcd for C17H26NaO6: 349.1627; found: 349.1597 [M+ + Na].
Compound 9da (R = CH2=CHCH2): colorless oil. ¹H NMR (400 MHz, CDCl3): δ = 2.10 (3 H, s), 2.21 (1 H, br s), 2.44 (2 H, d, J = 7.3 Hz), 3.60 (1 H, d, J = 12.0 Hz), 3.64 (1 H, d, J = 12.0 Hz), 3.78 (6 H, s), 4.21 (1 H, d, J = 12.0 Hz), 4.26 (1 H, d, J = 12.0 Hz), 4.52 (2 H, s), 5.14-5.20 (2 H, m), 5.81-5.92 (1 H, m), 6.38 (1 H, t, J = 2.2 Hz), 6.50 (2 H, d, J = 2.2 Hz). ¹³C NMR (75 MHz, CDCl3): δ = 20.9, 35.2, 55.3, 63.2, 63.9, 64.3, 78.3, 99.4, 105.3, 118.9, 132.2, 140.9, 160.8, 171.1. IR (neat): 3483, 2939, 1741, 1599, 1464, 1238, 1205, 1155, 1055 cm. ESI-MS: m/z calcd for C17H24NaO6: 347.1471; found: 347.1494 [M+ + Na].
Compound 9ea (R = Ph): colorless oil. ¹H NMR (400 MHz, CDCl3): δ = 2.06 (3 H, s), 2.22 (1 H, br s), 3.79 (6 H, s), 3.88-3.99 (2 H, m), 4.30 (1 H, d, J = 11.5 Hz), 4.35 (1 H, d, J = 11.5 Hz), 4.64 (2 H, s), 6.38 (1 H, t, J = 2.2 Hz), 6.50 (2 H, d, J = 2.2 Hz), 7.32-7.36 (1 H, m), 7.38-7.45 (4 H, m). ¹³C NMR (75 MHz, CDCl3): δ = 20.9, 55.3, 65.0, 65.3, 65.5, 80.5, 99.4, 105.2, 126.7, 128.3, 128.7, 138.5, 140.7, 160.9, 170.9. IR (neat): 3481, 2939, 1741, 1599, 1462, 1238, 1205, 1155, 1053 cm. ESI-MS: m/z calcd for C20H24NaO6: 383.1471; found: 383.1466 [M+ + Na].