Subscribe to RSS
DOI: 10.1055/s-0029-1218561
A New Access to the 6,8-Dioxabicyclo[3.2.1]octane Ring System Using a Three-Component Reaction: Enantioselective Synthesis of (+)-iso-exo-Brevicomin
Publication History
Publication Date:
10 December 2009 (online)
Abstract
The combination of a catalytic hetero-Diels-Alder-allylboration sequence and a ruthenium-catalyzed isomerization of an allylic alcohol moiety as key steps open a new route for the asymmetric synthesis of 6,8-dioxabicyclo[3.2.1]octane subunits. The application of this strategy to the synthesis of (+)-iso-exo-brevicomin is also reported.
Key words
natural product - asymmetric catalysis - cycloaddition - boron - redox isomerization
-
1a
Mori K. Tetrahedron 1989, 45: 3233 -
1b
Francke W.Schröder W. Curr. Org. Chem. 1999, 3: 407 - Some examples:
-
2a For palytoxin, see:
Moore RE. Prog. Chem. Org. Nat. Prod. 1985, 48: 81 -
2b For pinnatoxin A, see:
Uemura D.Chou T.Haino T.Nagatsu A.Fukuzawa S.Zheng SZ.Chen HS. J. Am. Chem. Soc. 1995, 117: 1155 -
2c For attenol A, see:
Takada N.Suenaga K.Yamada K.Zheng S.-Z.Chen H.-S.Uemura D. Chem. Lett. 1999, 1025 -
2d For pteriatoxins, see:
Takada N.Umemura N.Suenaga K.Uemura D. Tetrahedron Lett. 2001, 42: 3495 -
2e For trichodermatide A,
see:
Sun Y.Tian L.Huang J.Ma H.-Y.Zheng Z.Lv A.-L.Yasukawa K.Pei Y.-H. Org. Lett. 2008, 10: 393 - 3
Mitchell SS.Rhodes D.Bushman FD.Faulkner DJ. Org. Lett. 2000, 2: 1605 -
4a
Milroy L.-G.Zintalla G.Prencipe G.Michel P.Ley S.Gunaratnam M.Beltran M.Neidle S. Angew. Chem. Int. Ed. 2007, 46: 2493 -
4b
Milroy L.-G.Zintalla G.Loiseau F.Qian Z.Prencipe G.Pepper C.Fegan C.Ley SV. ChemMedChem 2008, 3: 1922 -
5a
Burke SD.Müller N.Beaudry CM. Org. Lett. 1999, 1: 1827 -
5b
Marvin CC.Voight EA.Suh JM.Paradise CL.Burke SD. J. Org. Chem. 2008, 73: 8452 - For the formation of dioxabicyclo[3.2.1]octane structure via catalyzed cycloisomerization, see:
-
6a
Antoniotti S.Genin E.Michelet V.Genet JP. J. Am. Chem. Soc. 2005, 127: 9976 -
6b
Liu B.De Brabander JK. Org. Lett. 2006, 8: 4907 -
6c
Ramana CV.Patel P.Gonnade RG. Tetrahedron Lett. 2007, 48: 4771 -
6d
Diéguez-Vasquez A.Tzschuscke CC.Lam WY.Ley SV. Angew. Chem. Int. Ed. 2008, 47: 209 -
6e
Ramana CV.Induvadana B. Tetrahedron Lett. 2009, 50: 271 - For some reviews on synthesis of bridged bicyclic ketals, see:
-
7a
Kotsuki H. Synlett 1992, 97 -
7b
Kiyota H. Top. Heterocycl. Chem. 2006, 5: 65 - 8
Gademan K.Chavez DE.Jacobsen EN. Angew. Chem. Int. Ed. 2002, 41: 3059 -
9a
Deligny M.Carreaux F.Toupet L.Carboni B. Adv. Synth. Catal. 2003, 345: 1215 -
9b
Gao X.Hall DG. J. Am. Chem. Soc. 2003, 125: 9308 -
9c
Gao X.Hall DG.Deligny M.Favre A.Carreaux F.Carboni B. Chem. Eur. J. 2006, 12: 3132 -
10a
Deligny M.Carreaux F.Carboni B. Synlett 2005, 1462 -
10b
Gao X.Hall DG. J. Am. Chem. Soc. 2005, 127: 1628 -
10c
Carreaux F.Favre A.Carboni B.Rouaud I.Boustie J. Tetrahedron Lett. 2006, 47: 4545 -
10d
Favre A.Carreaux F.Deligny M.Carboni B. Eur. J. Org. Chem. 2008, 4900 -
10e
Penner M.Rauniyar V.Kaspar LT.Hall DG. J. Am. Chem. Soc. 2009, 131: 14216 - 13
Francke W.Schröder F.Philipp P.Meyer H.Sinnwell V.Gries G. Bioorg. Med. Chem. 1996, 4: 363 -
14a
Mori K.Takikawa H.Nishimura Y.Horikiri H. Liebigs Ann./Recl. 1997, 327 -
14b
Taniguchi T.Takeuchi M.Ogasawara K. Tetrahedron: Asymmetry 1998, 9: 1451 -
14c
De Sousa AL.Resck IS. J. Braz. Chem. Soc. 2002, 13: 233 -
14d
Prasad KR.Anbarasan P. Tetrahedron: Asymmetry 2007, 18: 1419 -
16a Using
isomerization of allylic alcohols, see:
Ito M.Kitahara S.Ikariya T. J. Am. Chem. Soc. 2005, 127: 6172 -
16b Using isomerization of
propargylic alcohols, see:
Trost BM.Livingston RC. J. Am. Chem. Soc. 2008, 130: 11970 - For reviews, see:
-
17a
Uma R.Crévisy C.Grée R. Chem. Rev. 2003, 103: 27 -
17b
Cadierno V.Crochet P.Gimeno J. Synlett 2008, 1105 - 18
Bouziane A.Carboni B.Bruneau C.Carreaux F.Renaud J.-L. Tetrahedron 2008, 64: 11745 - 21
Gravel M.Touré BB.Hall DG. Org. Prep. Proced. Int. 2004, 36: 573
References and Notes
General Procedure
and Selected Characterization Data
To a stirred solution
of 3 (0.3 mmol) in CH2Cl2 (3
mL) at 0 ˚C was added BF3˙OEt2 (0.33
mmol). After 10 min, the resulting solution was warmed to r.t. and
stirred for 90 min (excepted in the case of 3d).
The reaction mixture was quenched with sat. aq NaHCO3 (1
mL), and the aqueous phase was extracted with Et2O (2 × 2
mL). The combined organic phases were washed with brine, dried over
MgSO4, filtrated, and concentrated under reduced pressure. Compounds 4 were purified by flash chromatography
on silica gel (210-400 mesh).
Compound 4d was obtained as a colorless oil (95%). [α]D
²5 +33.5
(c 1.75, CH2Cl2). ¹H
NMR (300 MHz, CDCl3): δ = 1.03
(s, 9 H), 1.91-1.97 (m, 1 H), 2.33-2.42 (m, 1
H), 4.26 (d, 1 H, J = 8.4
Hz), 4.44 (d, 1 H, J = 8.8
Hz), 4.47 (d, 1 H, J = 4.9
Hz), 5.50-5.52 (m, 1 H), 5.60-5.63 (m, 1 H), 5.98-6.04
(m, 1 H), 7.20-7.28 (m, 7 H), 7.35-7.49 (m, 6
H), 7.66-7.71 (m, 2 H). ¹³C
NMR (75 MHz, CDCl3): δ = 19.4, 26.9,
33.8, 72.0, 75.0, 88.7, 100.9, 124.3, 127.4, 127.5, 127.6, 127.7,
128.0, 128.9, 129.7, 129.8, 133.0, 134.0, 135.9, 136.0, 141.4. Anal.
Calcd for C29H32O3Si: C, 76.28; H,
7.06. Found: C, 76.35; H, 7.01.
Compound 8 was obtained as colorless oil (87%). [α]D ²5 +20.3 (c 1.30, CH2Cl2). ¹H NMR (300 MHz, CDCl3): δ = 1.03 (s, 9 H), 1.45-1.88 (m, 4 H), 2.29 (br s, 1 H), 3.60-3.63 (m, 1 H), 4.04 (d, 1 H, J = 7.3 Hz), 4.20-4.25 (m, 1 H), 4.49 (d, 1 H, J = 7.3 Hz), 5.32 (br s, 1 H), 7.21-7.33 (m, 7 H), 7.35-7.48 (m, 6 H), 7.61-7.69 (m, 2 H). ¹³C NMR (75 MHz, CDCl3): δ = 19.4, 23.8, 26.8, 26.9, 66.7, 76.1, 77.2, 78.9, 81.5, 102.5, 127.4, 127.6, 127.8, 128.1, 129.6, 129.8, 133.1, 133.8, 135.9, 136.0, 140.9. Anal. Calcd for C29H34O4Si: C, 73.38; H, 7.22. Found: C, 73.37; H, 7.11.
15The ee was measured by GC analysis using a chiral stationary phase (Varian WCOT Fused Silica 25 × 0.25 mm coated CP Chirasil-dex CB DF = 0.25).
191-Phenylpropan-1-one can be obtained from the corresponding allylic alcohol in 97% yield with only 2 mol% of [RuCp*(MeCN)3][PF6] in toluene at r.t. These new conditions represent an improvement of the previously described process with this catalyst.
20
Characterization
Data for Key Synthetic Intermediates
Compound 3e was obtained from 1 in
70% yield as a colorless oil. [α]D
²5 +72
(c 0.59, CH2Cl2). ¹H
NMR (300 MHz, CDCl3): δ = 1.18-1.25
(m, 6 H), 2.19-2.22 (m, 2 H), 2.72 (br s, 1 H), 3.53 (dq,
1 H, J = 7.1,
9.3 Hz), 3.69-3.72 (m, 1 H), 3.96 (dq, 1 H, J = 7.1, 9.3
Hz), 3.98-4.03 (m, 1 H), 4.72 (dd, 1 H, J = 4.8,
6.1 Hz), 5.60-5.63 (m, 1 H), 5.78-5.80 (m, 1 H). ¹³C
NMR (75 MHz, CDCl3): δ = 15.2,
18.6, 31.1, 64.4, 69.6, 78.8, 98.5, 124.9, 126.1. HRMS (EI): m/z [M -˙OCH2CH3]+ calcd
for C7H11O2: 127.0759; found: 127.0755.
Compound 12 was obtained as colorless oil (mixture
of diastereomers, 63%). ¹H NMR (300
MHz, CDCl3): δ = 1.20 (d,
3 H, J = 5.9
Hz), 1.35-1.70 (m, 6 H), 1.81 (br s, 1 H), 2.68 (br s,
1 H), 3.40-3.43 (m, 2 H), 4.09-4.12 (m, 1 H),
4.43 (d, 1 H, J = 11.5
Hz), 4.68 (d, 1 H, J = 11.5
Hz), 5.11 (dd, 1 H, J = 1.2,
10.4 Hz), 5.23 (d, 1 H, J = 17.2
Hz), 5.88 (ddd, 1 H, J = 6.2,
10.4, 17.2 Hz), 7.26-7.43 (m, 5 H). ¹³C
NMR (75 MHz, CDCl3): δ = 15.5,
21.3, 21.4, 32.5, 32.6, 36.9, 71.0, 73.0, 73.1, 74.8, 74.9, 78.3,
78.4, 114.5, 114.6, 127.7, 127.8, 128.5, 138.3, 141.1, 141.2. ESI-HRMS: m/z [M + Na]+ calcd for
C16H24O3Na: 287.1623; found: 287.1623.
(+)-Iso-exo-brevicomin was obtained as a colorless
oil (highly volatile, 60%): [α]D
²5 +53
(c 0.3, CHCl3); lit.¹4d [α]D +54
(c 0.5, CHCl3). ¹H
NMR (300 MHz, CDCl3): δ = 0.96
(t, 3 H, J = 7.9
Hz), 1.18 (d, 3 H, J = 6.5
Hz), 1.43-1.95 (m, 8 H), 4.06 (br s, 1 H), 4.22 (q, 1 H, J = 6.5 Hz). ¹³C
NMR (75 MHz, CDCl3): δ = 7.3,
17.1, 21.6, 28.0, 30.6, 33.5, 75.5, 79.9, 109.5. Anal. Calcd for
C9H16O2: C, 69.19; H, 10.32. Found:
C, 69.27; H, 10.41.