Synlett 2010(2): 207-210  
DOI: 10.1055/s-0029-1218561
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

A New Access to the 6,8-Dioxabicyclo[3.2.1]octane Ring System Using a Three-Component Reaction: Enantioselective Synthesis of (+)-iso-exo-Brevicomin

Asmae Bouzianea, Thomas Régniera, François Carreaux*a, Bertrand Carbonia, Christian Bruneaua, Jean-Luc Renaudb
a Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France
e-Mail: francois.carreaux@univ-rennes1.fr;
b Laboratoire Chimie Moléculaire et Thioorganique, UMR CNRS 6507, 6 Bd du Maréchal Juin, 14050 Caen, France
Further Information

Publication History

Received 9 October 2009
Publication Date:
10 December 2009 (online)

Abstract

The combination of a catalytic hetero-Diels-Alder-­allylboration sequence and a ruthenium-catalyzed isomerization of an allylic alcohol moiety as key steps open a new route for the asymmetric synthesis of 6,8-dioxabicyclo[3.2.1]octane subunits. The application of this strategy to the synthesis of (+)-iso-exo-brevi­comin is also reported.

    References and Notes

  • 1a Mori K. Tetrahedron  1989,  45:  3233 
  • 1b Francke W. Schröder W. Curr. Org. Chem.  1999,  3:  407 
  • Some examples:
  • 2a For palytoxin, see: Moore RE. Prog. Chem. Org. Nat. Prod.  1985,  48:  81 
  • 2b For pinnatoxin A, see: Uemura D. Chou T. Haino T. Nagatsu A. Fukuzawa S. Zheng SZ. Chen HS. J. Am. Chem. Soc.  1995,  117:  1155 
  • 2c For attenol A, see: Takada N. Suenaga K. Yamada K. Zheng S.-Z. Chen H.-S. Uemura D. Chem. Lett.  1999,  1025 
  • 2d For pteriatoxins, see: Takada N. Umemura N. Suenaga K. Uemura D. Tetrahedron Lett.  2001,  42:  3495 
  • 2e For trichodermatide A, see: Sun Y. Tian L. Huang J. Ma H.-Y. Zheng Z. Lv A.-L. Yasukawa K. Pei Y.-H. Org. Lett.  2008,  10:  393 
  • 3 Mitchell SS. Rhodes D. Bushman FD. Faulkner DJ. Org. Lett.  2000,  2:  1605 
  • 4a Milroy L.-G. Zintalla G. Prencipe G. Michel P. Ley S. Gunaratnam M. Beltran M. Neidle S. Angew. Chem. Int. Ed.  2007,  46:  2493 
  • 4b Milroy L.-G. Zintalla G. Loiseau F. Qian Z. Prencipe G. Pepper C. Fegan C. Ley SV. ChemMedChem  2008,  3:  1922 
  • 5a Burke SD. Müller N. Beaudry CM. Org. Lett.  1999,  1:  1827 
  • 5b Marvin CC. Voight EA. Suh JM. Paradise CL. Burke SD. J. Org. Chem.  2008,  73:  8452 
  • For the formation of dioxabicyclo[3.2.1]octane structure via catalyzed cycloisomerization, see:
  • 6a Antoniotti S. Genin E. Michelet V. Genet JP. J. Am. Chem. Soc.  2005,  127:  9976 
  • 6b Liu B. De Brabander JK. Org. Lett.  2006,  8:  4907 
  • 6c Ramana CV. Patel P. Gonnade RG. Tetrahedron Lett.  2007,  48:  4771 
  • 6d Diéguez-Vasquez A. Tzschuscke CC. Lam WY. Ley SV. Angew. Chem. Int. Ed.  2008,  47:  209 
  • 6e Ramana CV. Induvadana B. Tetrahedron Lett.  2009,  50:  271 
  • For some reviews on synthesis of bridged bicyclic ketals, see:
  • 7a Kotsuki H. Synlett  1992,  97 
  • 7b Kiyota H. Top. Heterocycl. Chem.  2006,  5:  65 
  • 8 Gademan K. Chavez DE. Jacobsen EN. Angew. Chem. Int. Ed.  2002,  41:  3059 
  • 9a Deligny M. Carreaux F. Toupet L. Carboni B. Adv. Synth. Catal.  2003,  345:  1215 
  • 9b Gao X. Hall DG. J. Am. Chem. Soc.  2003,  125:  9308 
  • 9c Gao X. Hall DG. Deligny M. Favre A. Carreaux F. Carboni B. Chem. Eur. J.  2006,  12:  3132 
  • 10a Deligny M. Carreaux F. Carboni B. Synlett  2005,  1462 
  • 10b Gao X. Hall DG. J. Am. Chem. Soc.  2005,  127:  1628 
  • 10c Carreaux F. Favre A. Carboni B. Rouaud I. Boustie J. Tetrahedron Lett.  2006,  47:  4545 
  • 10d Favre A. Carreaux F. Deligny M. Carboni B. Eur. J. Org. Chem.  2008,  4900 
  • 10e Penner M. Rauniyar V. Kaspar LT. Hall DG. J. Am. Chem. Soc.  2009,  131:  14216 
  • 13 Francke W. Schröder F. Philipp P. Meyer H. Sinnwell V. Gries G. Bioorg. Med. Chem.  1996,  4:  363 
  • 14a Mori K. Takikawa H. Nishimura Y. Horikiri H. Liebigs Ann./Recl.  1997,  327 
  • 14b Taniguchi T. Takeuchi M. Ogasawara K. Tetrahedron: Asymmetry  1998,  9:  1451 
  • 14c De Sousa AL. Resck IS. J. Braz. Chem. Soc.  2002,  13:  233 
  • 14d Prasad KR. Anbarasan P. Tetrahedron: Asymmetry  2007,  18:  1419 
  • 16a Using isomerization of allylic alcohols, see: Ito M. Kitahara S. Ikariya T. J. Am. Chem. Soc.  2005,  127:  6172 
  • 16b Using isomerization of propargylic alcohols, see: Trost BM. Livingston RC. J. Am. Chem. Soc.  2008,  130:  11970 
  • For reviews, see:
  • 17a Uma R. Crévisy C. Grée R. Chem. Rev.  2003,  103:  27 
  • 17b Cadierno V. Crochet P. Gimeno J. Synlett  2008,  1105 
  • 18 Bouziane A. Carboni B. Bruneau C. Carreaux F. Renaud J.-L. Tetrahedron  2008,  64:  11745 
  • 21 Gravel M. Touré BB. Hall DG. Org. Prep. Proced. Int.  2004,  36:  573 
11

General Procedure and Selected Characterization Data
To a stirred solution of 3 (0.3 mmol) in CH2Cl2 (3 mL) at 0 ˚C was added BF3˙OEt2 (0.33 mmol). After 10 min, the resulting solution was warmed to r.t. and stirred for 90 min (excepted in the case of 3d). The reaction mixture was quenched with sat. aq NaHCO3 (1 mL), and the aqueous phase was extracted with Et2O (2 × 2 mL). The combined organic phases were washed with brine, dried over MgSO4, filtrated, and concentrated under reduced pressure. Compounds 4 were purified by flash chromatography on silica gel (210-400 mesh).
Compound 4d was obtained as a colorless oil (95%). [α]D ²5 +33.5 (c 1.75, CH2Cl2). ¹H NMR (300 MHz, CDCl3): δ = 1.03 (s, 9 H), 1.91-1.97 (m, 1 H), 2.33-2.42 (m, 1 H), 4.26 (d, 1 H, J = 8.4 Hz), 4.44 (d, 1 H, J = 8.8 Hz), 4.47 (d, 1 H, J = 4.9 Hz), 5.50-5.52 (m, 1 H), 5.60-5.63 (m, 1 H), 5.98-6.04 (m, 1 H), 7.20-7.28 (m, 7 H), 7.35-7.49 (m, 6 H), 7.66-7.71 (m, 2 H). ¹³C NMR (75 MHz, CDCl3): δ = 19.4, 26.9, 33.8, 72.0, 75.0, 88.7, 100.9, 124.3, 127.4, 127.5, 127.6, 127.7, 128.0, 128.9, 129.7, 129.8, 133.0, 134.0, 135.9, 136.0, 141.4. Anal. Calcd for C29H32O3Si: C, 76.28; H, 7.06. Found: C, 76.35; H, 7.01.

12

Compound 8 was obtained as colorless oil (87%). [α]D ²5 +20.3 (c 1.30, CH2Cl2). ¹H NMR (300 MHz, CDCl3): δ = 1.03 (s, 9 H), 1.45-1.88 (m, 4 H), 2.29 (br s, 1 H), 3.60-3.63 (m, 1 H), 4.04 (d, 1 H, J = 7.3 Hz), 4.20-4.25 (m, 1 H), 4.49 (d, 1 H, J = 7.3 Hz), 5.32 (br s, 1 H), 7.21-7.33 (m, 7 H), 7.35-7.48 (m, 6 H), 7.61-7.69 (m, 2 H). ¹³C NMR (75 MHz, CDCl3): δ = 19.4, 23.8, 26.8, 26.9, 66.7, 76.1, 77.2, 78.9, 81.5, 102.5, 127.4, 127.6, 127.8, 128.1, 129.6, 129.8, 133.1, 133.8, 135.9, 136.0, 140.9. Anal. Calcd for C29H34O4Si: C, 73.38; H, 7.22. Found: C, 73.37; H, 7.11.

15

The ee was measured by GC analysis using a chiral stationary phase (Varian WCOT Fused Silica 25 × 0.25 mm coated CP Chirasil-dex CB DF = 0.25).

19

1-Phenylpropan-1-one can be obtained from the corresponding allylic alcohol in 97% yield with only 2 mol% of [RuCp*(MeCN)3][PF6] in toluene at r.t. These new conditions represent an improvement of the previously described process with this catalyst.

20

Characterization Data for Key Synthetic Intermediates
Compound 3e was obtained from 1 in 70% yield as a colorless oil. [α]D ²5 +72 (c 0.59, CH2Cl2). ¹H NMR (300 MHz, CDCl3): δ = 1.18-1.25 (m, 6 H), 2.19-2.22 (m, 2 H), 2.72 (br s, 1 H), 3.53 (dq, 1 H, J = 7.1, 9.3 Hz), 3.69-3.72 (m, 1 H), 3.96 (dq, 1 H, J = 7.1, 9.3 Hz), 3.98-4.03 (m, 1 H), 4.72 (dd, 1 H, J = 4.8, 6.1 Hz), 5.60-5.63 (m, 1 H), 5.78-5.80 (m, 1 H). ¹³C NMR (75 MHz, CDCl3): δ = 15.2, 18.6, 31.1, 64.4, 69.6, 78.8, 98.5, 124.9, 126.1. HRMS (EI): m/z [M -˙OCH2CH3]+ calcd for C7H11O2: 127.0759; found: 127.0755.
Compound 12 was obtained as colorless oil (mixture of diastereomers, 63%). ¹H NMR (300 MHz, CDCl3): δ = 1.20 (d, 3 H, J = 5.9 Hz), 1.35-1.70 (m, 6 H), 1.81 (br s, 1 H), 2.68 (br s, 1 H), 3.40-3.43 (m, 2 H), 4.09-4.12 (m, 1 H), 4.43 (d, 1 H, J = 11.5 Hz), 4.68 (d, 1 H, J = 11.5 Hz), 5.11 (dd, 1 H, J = 1.2, 10.4 Hz), 5.23 (d, 1 H, J = 17.2 Hz), 5.88 (ddd, 1 H, J = 6.2, 10.4, 17.2 Hz), 7.26-7.43 (m, 5 H). ¹³C NMR (75 MHz, CDCl3): δ = 15.5, 21.3, 21.4, 32.5, 32.6, 36.9, 71.0, 73.0, 73.1, 74.8, 74.9, 78.3, 78.4, 114.5, 114.6, 127.7, 127.8, 128.5, 138.3, 141.1, 141.2. ESI-HRMS: m/z [M + Na]+ calcd for C16H24O3Na: 287.1623; found: 287.1623.
(+)-Iso-exo-brevicomin was obtained as a colorless oil (highly volatile, 60%): [α]D ²5 +53 (c 0.3, CHCl3); lit.¹4d [α]D +54 (c 0.5, CHCl3). ¹H NMR (300 MHz, CDCl3): δ = 0.96 (t, 3 H, J = 7.9 Hz), 1.18 (d, 3 H, J = 6.5 Hz), 1.43-1.95 (m, 8 H), 4.06 (br s, 1 H), 4.22 (q, 1 H, J = 6.5 Hz). ¹³C NMR (75 MHz, CDCl3): δ = 7.3, 17.1, 21.6, 28.0, 30.6, 33.5, 75.5, 79.9, 109.5. Anal. Calcd for C9H16O2: C, 69.19; H, 10.32. Found: C, 69.27; H, 10.41.