Subscribe to RSS
DOI: 10.1055/s-0029-1218557
Synthesis of 6-Aryl-Substituted Cholesterol Derivatives from 3β-Acetoxy-6-iodocholest-5-ene and Arylboronic Acids Promoted by Palladium-Catalyzed Cross-Coupling
Publication History
Publication Date:
09 December 2009 (online)
Abstract
3β-Acetoxy-6-iodocholest-5-ene was prepared with a convenient method from cholesterol and used as a key intermediate for the synthesis of 6-arylated cholesterol derivatives using a Suzuki-Miyaura cross-coupling. This versatile and efficient synthesis way can widely be used in the synthesis of other 6-aryl or 6-heteroaryl steroids as potential drugs.
Key words
cross-coupling - palladium - 6-aryl steroids - Suzuki reaction - 6-iodovinyl steroid
-
1a
Simons K.Ikonen E. Science 2000, 290: 1721 -
1b
Maxfield FR.Tabas I. Nature (London) 2005, 438: 612 - 2
Dietschy JM.Turley SD. J. Lipid Res. 2004, 45: 1375 - 3
Andersson M.Elmberger PG.Edlund C.Kristensson K.Dallner G. FEBS Lett. 1990, 269: 15 - 4
Van Reyk DM.Brown AJ.Hult’en LM.Dean RT.Jessup W. Redox Rep. 2006, 11: 255 -
5a
Björkhem I. J. Clin. Invest. 2002, 110: 725 -
5b
Wang Y.Karu K.Griffiths WJ. Biochimie 2007, 89: 182 -
5c
Wang Y.Griffiths WJ. Neurochem. Int. 2008, 52: 506 -
6a
Schroepfer G.-J. Physiol. Rev. 2000, 80: 361 -
6b
Volle DH.Lobaccaro J.-MA. Mol. Cell. Endocrinol. 2007, 265 -
6c
Javitt NB. Steroids 2008, 73: 149 -
6d
Lordan S.Mackrill JJ.O’Brien NM. J. Nutr. Biochem. 2009, 20: 321 - 7
Leonarduzzi G.Sottero B.Poli G. J. Nutr. Biochem. 2002, 13: 700 - 8
Pulfer MK.Murphy RC. J. Biol. Chem. 2004, 279: 26331 -
9a
Liu J.Netherland C.Pickle T.Sinensky MS.Thewke DP. Arch. Biochem. Biophys. 2009, 487: 54 -
9b
Vejux A.Malvitte L.Lizard G. Braz. J. Med. Biol. Res. 2008, 41: 545 -
10a
El Kihel L.Bourass J.Dherbomez M.Letourneux Y. Synth. Commun. 1997, 1951 -
10b
Choucair B.Dherbomez M.Roussakis C.El Kihel L. Tetrahedron 2004, 60: 11477 -
10c
Bazin MA.Loiseau PM.Bories C.Letourneux Y.Rault S.El Kihel L. Eur. J. Med. Chem. 2006, 41: 1109 -
10d
Bazin MA.El Kihel L.Boulouard M.Bouët V.Rault S. Steroids 2009, 74: 931 - 11
Dubis AT.Lotowski Z.Siergiejezyk L.Wilezewska AZ.Morzycki JW. J. Chem. Res. 1998, 170 - 12
El Kihel L.Soustre I.Karst F.Letourneux Y. FEMS Microbiol. Lett. 1994, 120: 163 - 13
Jarman M.Barrie SE.Llera JM. J. Med. Chem. 1998, 41: 5375 -
14a
Njar VCO.Kato K.Nnane IP.Grigoryev DN.Long BJ.Brodie AMH. J. Med. Chem. 1998, 41: 902 -
14b
Ling YZ.Li JS.Liu Y.Kato K.Klus GT.Brodie A. J. Med. Chem. 1997, 40: 3297 -
14c
Zhu N.Ling Y.Lei X.Handratta V.Brodie AMH. Steroids 2003, 68: 603 - 15
Lukashev NV.Latyshehev GV.Donez PA.Skryabin GA.Beletskaya IP. Synthesis 2006, 3: 533 - 16
Flagan RJ.Charleson FP.Synnes EI. Can. J. Chem. 1985, 63: 2853 - 17
Gibicar D.Logar M.Horvat N.Marn-Pernat A.Ponikvar R.Horvat M. Anal. Bioanal. Chem. 2007, 388: 329 - 18
Barton DHR.Bashiardes G.Fourrey J.-L. Tetrahedron Lett. 1983, 24: 1605
References and Notes
Synthesis of 3β-Acetoxy-5α-cholestane-6-hydrazone
(2)
Hydrazine hydrate (0.42 mL, 13.5 mmol) was added
to a solution of 3β-acetoxy-5α-cholestan-6-one
(1, 3.00 g, 6.8 mmol) and AcOH (0.01 mL,
0.2 mmol) in EtOH (70 mL). The mixture was refluxed for 24 h. The
reaction mixture was concentrated, diluted with H2O (70
mL) and then extracted with CH2Cl2 (4 × 30
mL). The combined CH2Cl2 extracts were dried
over MgSO4 and evaporated under reduced pressure to give
compound 2 as a white powder (3.06 g, 99%);
mp 56 ˚C. IR (KBr): ν = 3480-3300
(NH2 hydrazone), 2950-2875 (CH alkane), 1727
(C=O ester), 1651 (C=N) cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 4.96 (s, 2
H, NH2 D2O exchange), 4.69-4.66 (m,
1 H, C3H), 2.92-2.97 (dd, 1 H, J = 13.28,
4.48 Hz, C5H), 2.04-2.10 (each 1 H, m, C7αH
and 7β-CH), 2.06 (s, 3 H,CH3COO), 0.92-0.89 (m,
3 H, 19-Me), 0.87 and 0.86 (each 3 H, d, J = 1.96
Hz, 26-Me and 27-Me), 0.63 (s, 3 H, 18-Me) ppm.¹³C
NMR (100 MHz, CDCl3): δ = 170.6 (CH3COO),
154.1 (C-6), 73.7 (C-3), 56.4 (C-14), 56.1 (C-17), 50.5 (C-9), 48.8
(C-13), 42.9 (C-5), 39.4 (C-12), 38.8 (C-10), 36.0 (C-1, C-20, C-22),
35.6 (C-7, C-8), 29.3 (C-4), 28.0 (C-16, C-25), 28.9 (C-2), 24.0 (C-19),
23.7 (C-15, C-23), 22.7 (C-26), 22.5 (C-27), 21.3
(C-11),
21.3 (CH3COO), 19.6 (C-21), 11.9 (C-18) ppm.
Synthesis of 3β-Acetoxy-6-iodocholest-5-ene (3) A 100 mL round-bottomed flask equipped with a magnetic stirring bar was charged with iodine (4.76 g, 18.8 mmol) and dry THF (5 mL) and flushed with nitrogen. The reactor was pushed into an ice bath (0 ˚C), and then 1,1,3,3-tetramethyl-guanidine (6 mL, 46.9 mmol) was added. Compound 5 was then dissolved into dry THF (30 mL) and added dropwise, and the solution was kept under stirring at 0 ˚C for 2 h. The mixture was filtered and the solvent evaporated. The solution was then stirred at 50 ˚C for 48 h. The reaction mixture was dissolved in Et2O, washed with 1 N HCl, 5% NaHCO3, sat. Na2S2O3, H2O, and dried over MgSO4. The crude product was purified by column chromatography (silica gel, cyclohexane-EtOAc = 9:1) to give the product as a yellow oil (4.55 g, 88%). IR (KBr): ν = 2935 (CH alkane), 1735 (C=O ester), 1030 (C=CI) cm-¹. ¹H NMR (400 MHz, CDCl3): δ = 4.64-4.58 (m, 1 H, C3H), 2.94 and 2.93 (each 1 H, m, C4 αH and C4 βH), 2.63 and 2.60 (each 1 H, m, C7 αH and C7 βH), 2.05 (s, 3 H, CH3COO), 1.07 (s, 3 H, 19-Me), 0.91 (d, J = 6.83 Hz, 3 H, 21-Me), 0.87 and 0.85 (each 3 H, d, J = 1.96 Hz, 26-Me and 27-Me), 0.66 (s, 3 H, 18-Me) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 170.3 (CH3COO), 142.8 (C-5), 101.3 (C-6), 72.7 (C-3), 55.9 (C-14, C-17), 49.6 (C-9), 42.4 (C-13), 41.2 (C-12), 39.5 (C-7, C-24), 36.8 (C-4), 36.1 (C-1), 35.7 (C-22), 35.3 (C-20), 34.4 (C-10), 28.2 (C-16), 27.9 (C-25), 27.7 (C-2), 24.1 (C-15), 23.8 (C-23), 22.8 (C-27), 22.5 (C-26), 21.4 (C-11), 21.2 (CH3COO), 19.7 (C-19), 18.7 (C-21), 11.8 (C-18) ppm.
21
General Procedure
for the Coupling of 6-Iodovinyl-steroid with Boronic Acids
In
a vial with a screw cap, compound 3 (0.30
g, 0.5 mmol), boronic acid (1.1 mmol), Pd(OAc)2 (0.01
g, 0.05 mmol), Ph3P (0.03 g, 0.1 mmol), and K2CO3 (0.19
g, 1.4 mmol) were mixed in DMF (6 mL) under Ar atmosphere. The mixture was
stirred at 150 ˚C for 12-18 h, then diluted
with H2O (30 mL), and extracted with Et2O
(4 × 15 mL). The combined organic layers
were dried over MgSO4. The crude product was purified
by column chromatography on deactivated alumina (6% H2O),
eluting by cyclohexane-EtOAc (99:1).
3β-Acetoxy-6-(4-methoxy)phenylcholest-5-ene
(4a): White amorphous solid. Yield:
48 mg (50%). IR (KBr): ν = 2928 (CH alkane),
1716 (C=O ester), 1607-1509 (C=C)
cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 7.01 (d,
2 H, J = 8.79 Hz,
H-ar), 6.85 (d, 2 H, J = 7.79
Hz, H-ar),4.62-4.50 (m, 1 H, C3H), 3.80 (s,
3 H, OCH3), 2.54 and 2.50 (each 1 H, m, C4
αH
and C4
βH), 2.20 and 2.16 (each 1
H, m, C7
αH and C7
βH),
1.95 (s, 3 H, CH3COO), 1.10 (s, 3 H, 19-Me), 0.92 (d, 3
H, J = 6.83
Hz, 21-Me), 0.87 and 0.85 (each 3 H, d, J = 1.96
Hz, 26-Me and 27-Me), 0.71 (s, 3 H, 18-Me) ppm. ¹³C
NMR (100 MHz, CDCl3): δ = 170.4 (CH3COO),
157.9 (C-4ar), 136.4 (C-6), 134.7 (C-5), 133.6 (C-1-ar), 129.2 (C-2
and C-2′-ar), 113.5 (C3 and C-3′-ar), 73.9 (C-3),
56.6 (C-14), 56.1 (C-17), 55.2 (OCH3), 49.9 (C-9), 42.3
(C-13), 39.8 (C-24), 39.6 (C-12), 39.5 (C-1), 37.3 (C-22), 36.9
(C-20), 36.2 (C-7), 35.8 (C-10), 32.8 (C-8), 32.0 (C-4), 28.3 (C-16), 27.9
(C-25), 27.7 (C-2), 24.2 (C-15), 23.8 (C-23), 22.8 (C-26 and C27),
21.4 (C-11), 21.1 (CH3COO-), 19.5 (C-19), 18.7 (C-21),
11.9 (C-18). MS (30eV, IE): m/z = 534.3
(8) [M+
], 474.3
(100) [M+
- CH3COOH],
459.3 (8), 368.3 (25). Anal. Calcd for C36H54O3 (534.81):
C, 80.85; H, 10.18. Found: C, 80.42; H, 9.77.