Synlett 2009(20): 3267-3270  
DOI: 10.1055/s-0029-1218361
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Efficient Stereoselective Glycosylations of Alcohols by Sugar Perpivalates: The First Use of 1-O-Pivaloylated Glycosyl Donors

Aliaksei V. Pukin, Han Zuilhof*
Laboratory of Organic Chemistry, Wageningen University, Dreijenplein 8, 6703 HB, Wageningen, The Netherlands
Fax: +31(317)484914; e-Mail: han.zuilhof@wur.nl;
Further Information

Publication History

Received 2 September 2009
Publication Date:
11 November 2009 (online)

Abstract

1-O-Pivaloyl glycosides were shown to be efficient glycosyl donors by using the perpivaloylated derivatives of lactose, galactose and glucose in the direct ZnCl2-promoted glycosylations of various alcohols. The corresponding glycosides were isolated in good yields and β-selectivity.

    References and Notes

  • 1 Zhu XM. Schmidt RR. Angew. Chem. Int. Ed.  2009,  48:  1900 
  • 2a Davis BG. J. Chem. Soc., Perkin Trans. 1  2000,  2137 
  • 2b Boons GJ. Tetrahedron  1996,  52:  1095 
  • 2c Toshima K. Tatsuta K. Chem. Rev.  1993,  93:  1503 
  • 3a Handbook of Chemical Glycosylation: Advances in Stereoselectivity and Therapeutic Relevance   Demchenko AV. Wiley-VCH; Weinheim: 2008. 
  • 3b Smoot JT. Demchenko AV. In Advances in Carbohydrate Chemistry and Biochemistry   Vol. 62:  Elsevier Academic Press Inc; San Diego: 2009.  p.161-250  
  • 3c Homann A. Seibel J. Appl. Microbiol. Biotechnol.  2009,  83:  209 
  • 3d Dhanawat M. Shrivastava SK. Mini-Rev. Med. Chem.  2009,  9:  169 
  • 3e Ando H. Trends Glycosci. Glycotechnol.  2008,  20:  141 
  • 3f Carmona AT. Moreno-Vargas AJ. Robina I. Curr. Org. Synth.  2008,  5:  33 
  • 3g Shuto S. Ichikawa S. Abe H. Matsuda A. J. Synth. Org. Chem., Jpn.  2008,  66:  50 
  • 3h Castagner B. Seeberger PH. In Combinatorial Chemistry on Solid Supports   Vol. 278:  Springer-Verlag; Berlin: 2007.  p.289-309  
  • 3i Galonic DP. Gin DY. Nature  2007,  446:  1000 
  • 3j Toshima K. Carbohydr. Res.  2006,  341:  1282 
  • 3k Demchenko AV. Kamat MN. De Meo C. Synlett  2003,  1287 
  • 3l Demchenko AV. Curr. Org. Chem.  2003,  7:  35 
  • 3m Hanessian S. Lou BL. Chem. Rev.  2000,  100:  4443 
  • 4a Wu D. Fujio M. Wong CH. Bioorg. Med. Chem.  2008,  16:  1073 
  • 4b Huang Y. Huang JH. Xie QJ. Yao SZ. Prog. Chem.  2008,  20:  942 
  • 4c Fantini J. Curr. Med. Chem.  2007,  14:  2911 
  • 4d Lalazar G. Preston S. Zigrnond E. Ben Yaacov A. Ilan Y. Mini-Rev. Med. Chem.  2006,  6:  1249 
  • 4e Dwek RA. Chem. Rev.  1996,  96:  683 
  • 4f Varki A. Glycobiology  1993,  3:  97 
  • 5a Liu Y. Palma AS. Feizi T. Biol. Chem.  2009,  390:  647 
  • 5b Pieters RJ. Org. Biomol. Chem.  2009,  7:  2013 
  • 5c Nan G. Yan H. Yang GL. Jian Q. Chen C. Li Z. Curr. Pharm. Biotechnol.  2009,  10:  138 
  • 5d Laurent N. Voglmeir J. Flitsch SL. Chem. Commun.  2008,  4400 
  • 5e Horlacher T. Seeberger PH. Chem. Soc. Rev.  2008,  37:  1414 
  • 5f Mrksich M. Chem. Soc. Rev.  2000,  29:  267 
  • 5g Hernaiz MJ. de la Fuente JM. Barrientos AG. Penades S. Angew. Chem. Int. Ed.  2002,  41:  1554 
  • 6a Garegg PJ. Konradsson P. Kvarnstrom I. Norberg T. Svensson SCT. Wigilius B. Acta Chem. Scand., Ser. B  1985,  39:  569 
  • 6b Paulsen H. Angew. Chem., Int. Ed. Engl.  1982,  21:  155 
  • 7 Schmidt RR. Kinzy W. In Advances in Carbohydrate Chemistry and Biochemistry   Vol. 50:  Academic Press Inc; San Diego: 1994.  p.21 
  • 8a Codee JDC. Litjens R. van den Bos LJ. Overkleeft HS. van der Marel GA. Chem. Soc. Rev.  2005,  34:  769 
  • 8b Garegg PJ. In Advances in Carbohydrate Chemistry and Biochemistry   Vol. 52:  Academic Press Inc; San Diego: 1997.  p.179 
  • 8c Fugedi P. Garegg PJ. Lonn H. Norberg T. Glycoconjugate J.  1987,  4:  97 
  • 9 Toshima K. Carbohydr. Res.  2000,  327:  15 
  • 10 Trincone A. Giordano A. Curr. Org. Chem.  2006,  10:  1163 
  • 11 Meloncelli PJ. Martin AD. Lowary TL. Carbohydr. Res.  2009,  344:  1110 
  • 12a Morales-Serna JA. Boutureira O. Diaz Y. Matheu MI. Castillon S. Carbohydr. Res.  2007,  1595 
  • 12b Morales-Serna JA. Boutureira O. Diaz Y. Matheu MI. Castillon S. Org. Biomol. Chem.  2008,  6:  443 
  • 13a Gouin SG. Pilgrim W. Porter RK. Murphy PV. Carbohydr. Res.  2005,  340:  1547 
  • 13b Milkereit G. Gerber S. Brandenburg K. Morr M. Vill V. Chem. Phys. Lipids  2005,  135:  1 
  • 13c Katsuraya K. Ikushima N. Takahashi N. Shoji T. Nakashima H. Yamamoto N. Yoshida T. Uryu T. Carbohydr. Res.  1994,  260:  51 
  • 13d Dahmen J. Frejd T. Gronberg G. Lave T. Magnusson G. Noori G. Carbohydr. Res.  1983,  116:  303 
  • 13e Banoub J. Bundle DR. Can. J. Chem.-Rev. Can. Chim.  1979,  57:  2085 
  • 13f Hanessian S. Banoub J. Carbohydr. Res.  1977,  59:  261 
  • 14 Murakami T. Hirono R. Sato Y. Furusawa K. Carbohydr. Res.  2007,  342:  1009 
  • 15a Seebacher W. Haslinger E. Weis R. Monatsh. Chem.  2001,  132:  839 
  • 15b Magnus V. Vikictopic D. Iskric S. Kveder S. Carbohydr. Res.  1983,  114:  209 
  • 15c Wulff G. Schmidt W. Carbohydr. Res.  1977,  53:  33 
  • 16a Murakami T. Sato Y. Shibakami M. Carbohydr. Res.  2008,  343:  1297 
  • 16b Yao QJ. Song J. Xia CF. Zhang WP. Wang PG. Org. Lett.  2006,  8:  911 
  • 16c Rai AN. Basu A. J. Org. Chem.  2005,  70:  8228 
  • 16d Takeda Y. Horito S. Carbohydr. Res.  2005,  340:  211 
  • 16e Yamamura T. Hada N. Kaburaki A. Yamano K. Takeda T. Carbohydr. Res.  2004,  339:  2749 
  • 16f Compostella F. Franchini L. De Libero G. Palmisano G. Ronchetti F. Panza L. Tetrahedron  2002,  58:  8703 
  • 16g Lindberg J. Svensson SCT. Pahlsson P. Konradsson P. Tetrahedron  2002,  58:  5109 
  • 16h Gege C. Geyer A. Schmidt RR. Chem. Eur. J.  2002,  8:  2454 
  • 16i Castro-Palomino JC. Simon B. Speer O. Leist M. Schmidt RR. Chem. Eur. J.  2001,  7:  2178 
  • 16j Nicolaou KC. Li J. Zenke G. Helv. Chim. Acta  2000,  83:  1977 
  • 17 Presser A. Kunert O. Potschger I. Monatsh. Chem.  2006,  137:  365 
  • 18a Pukin AV. Weijers C. van Lagen B. Wechselberger R. Sun B. Gilbert M. Karwaski MF. Florack DEA. Jacobs BC. Tio-Gillen AP. van Belkum A. Endtz HP. Visser GM. Zuilhof H. Carbohydr. Res.  2008,  343:  636 
  • 18b Sun B. Pukin AV. Visser GM. Zuilhof H. Tetrahedron Lett.  2006,  47:  7371 
  • 18c de Smet L. Pukin AV. Stork GA. de Vos CHR. Visser GM. Zuilhof H. Sudholter EJR. Carbohydr. Res.  2004,  339:  2599 
  • 19a de Smet L. Pukin AV. Sun QY. Eves BJ. Lopinski GP. Visser GM. Zuilhof H. Sudholter EJR. Appl. Surf. Sci.  2005,  252:  24 
  • 19b de Smet LCPM. Stork GA. Hurenkarnp GHF. Sun QY. Topal H. Vronen PJE. Sieval AB. Wright A. Visser GM. Zuilhof H. Sudholter EJR. J. Am. Chem. Soc.  2003,  125:  13916 
  • 20a Sisu C. Baron AJ. Branderhorst HM. Connel SD. Weijers C. de Vries R. Hayes ED. Pukin AV.
    Gilbert
    M. Pieters RJ. Zuilhof H. Visser GM. Turnbull WB. ChemBioChem  2009,  10:  329 
  • 20b Pukin AV. Branderhorst HM. Sisu C. Weijers C. Gilbert M. Liskamp RMJ. Visser GM. Zuilhof H. Pieters RJ. ChemBioChem  2007,  8:  1500 
  • 21 Barrientos AG. de la Fuente JM. Rojas TC. Fernandez A. Penades S. Chem. Eur. J.  2003,  9:  1909 
  • 24a Lemieux RU. Can. J. Chem.-Rev. Can. Chim.  1951,  29:  1079 
  • 24b Lemieux RU. Brice C. Can. J. Chem.-Rev. Can. Chim.  1955,  33:  109 
22

Data for 2b: ¹H NMR (400 MHz, C6D6): δ = 6.52 (d, J = 3.8 Hz, 1 H), 5.82 (t, J = 9.8 Hz, 1 H), 5.28 (t, J = 9.9 Hz, 1 H), 5.23 (dd, J = 10.0, 3.8 Hz, 1 H), 4.21-4.28 (m, 2 H), 4.08-4.14 (m, 1 H), 1.16 (s, 9 H), 1.12 (s, 9 H), 1.12 (s, 9 H), 1.09 (s, 9 H), 1.08 (s, 9 H); ¹³C NMR (100 MHz, C6D6): δ = 177.8, 177.2, 176.9, 176.8, 175.9, 89.5, 71.4, 70.5, 70.3, 68.5, 62.4, 39.4, 39.3, 39.2 (2 C, peaks overlap), 39.1, 27.7, 27.6, 27.5, 27.5, 27.4.

23

Typical glycosylation procedure: To a solution of lactose octapivalate 1 (1 g, 0.99 mmol) and 8-chlorooctan-1-ol (4b; 243 µL, 1.48 mmol) in anhydrous toluene (10 mL), was added ZnCl2 (0.2 g, 1.48 mmol, which was dried in vacuo at 120 ˚C for at least 1 h prior to use) and the resulting suspension was stirred at 70 ˚C for 5 h. After cooling, the reaction mixture was diluted with EtOAc (10 mL), and solid NaHCO3 (2 g) and H2O (0.5 mL) were added portion-wise with stirring. After the formation of gas stopped (˜20 min), the solution was filtered over Hyflo. The precipitate was washed thoroughly with EtOAc. The combined organic phase was evaporated in vacuo and the residue was purified by silica gel column chromatography (EtOAc-petroleum ether, 1:7) to give 8-chlorooctyl lactoside 5b (0.97 g, 0.9 mmol, 91%) as a white foam. ¹H NMR (400 MHz, CDCl3): δ = 5.36 (d, J = 2.3 Hz, 1 H), 5.18 (t, J = 9.5 Hz, 1 H), 5.09 (dd, J = 10.5, 8.0 Hz, 1 H), 4.96 (dd, J = 10.5, 3.5 Hz, 1 H), 4.79 (dd, J = 9.7, 7.9 Hz, 1 H), 4.50 (d, J = 7.8 Hz, 1 H), 4.47-4.56 (m, 1 H), 4.44 (d, J = 8.0 Hz, 1 H), 4.18 (dd, J = 12.0, 5.0 Hz, 1 H), 4.04-4.11 (m, 1 H), 3.95-4.03 (m, 1 H), 3.88-3.94 (m, 1 H), 3.85 (t, J = 9.5 Hz, 1 H), 3.67-3.75 (m, 1 H), 3.47 (t, J = 6.8 Hz, 2 H), 3.44-3.53 (m, 1 H), 3.33-3.41 (m, 1 H), 1.65-1.75 (m, 2 H), 1.48 (t, J = 6.4 Hz, 2 H), 1.32-1.42 (m, 2 H), 1.22-1.28 (m, 6 H), 1.21 (s, 9 H), 1.19 (s, 9 H), 1.17 (s, 9 H), 1.15 (s, 9 H), 1.11 (s, 9 H), 1.11 (s, 9 H), 1.05 (s, 9 H); ¹³C NMR (101 MHz, CDCl3): δ = 177.7, 177.5, 177.2, 177.0, 176.7, 176.5, 175.9, 100.7, 100.0, 73.7, 73.3, 71.7, 71.6, 71.4, 71.3, 69.6, 68.8, 66.8, 61.7, 61.3, 44.9, 38.9-38.6 (7 C, peaks overlap), 32.5, 29.4, 29.0, 28.7, 27.3, 27.2, 27.1, 27.0 (3 C, peaks overlap), 26.9, 26.7, 25.8.