Subscribe to RSS
DOI: 10.1055/s-0029-1218361
Efficient Stereoselective Glycosylations of Alcohols by Sugar Perpivalates: The First Use of 1-O-Pivaloylated Glycosyl Donors
Publication History
Publication Date:
11 November 2009 (online)
Abstract
1-O-Pivaloyl glycosides were shown to be efficient glycosyl donors by using the perpivaloylated derivatives of lactose, galactose and glucose in the direct ZnCl2-promoted glycosylations of various alcohols. The corresponding glycosides were isolated in good yields and β-selectivity.
Key words
carbohydrates - glycolipids - glycosyl donors - glycosylations - stereoselective synthesis
- 1
Zhu XM.Schmidt RR. Angew. Chem. Int. Ed. 2009, 48: 1900 -
2a
Davis BG. J. Chem. Soc., Perkin Trans. 1 2000, 2137 -
2b
Boons GJ. Tetrahedron 1996, 52: 1095 -
2c
Toshima K.Tatsuta K. Chem. Rev. 1993, 93: 1503 -
3a
Handbook of Chemical Glycosylation: Advances
in Stereoselectivity and Therapeutic Relevance
Demchenko AV. Wiley-VCH; Weinheim: 2008. -
3b
Smoot JT.Demchenko AV. In Advances in Carbohydrate Chemistry and Biochemistry Vol. 62: Elsevier Academic Press Inc; San Diego: 2009. p.161-250 -
3c
Homann A.Seibel J. Appl. Microbiol. Biotechnol. 2009, 83: 209 -
3d
Dhanawat M.Shrivastava SK. Mini-Rev. Med. Chem. 2009, 9: 169 -
3e
Ando H. Trends Glycosci. Glycotechnol. 2008, 20: 141 -
3f
Carmona AT.Moreno-Vargas AJ.Robina I. Curr. Org. Synth. 2008, 5: 33 -
3g
Shuto S.Ichikawa S.Abe H.Matsuda A. J. Synth. Org. Chem., Jpn. 2008, 66: 50 -
3h
Castagner B.Seeberger PH. In Combinatorial Chemistry on Solid Supports Vol. 278: Springer-Verlag; Berlin: 2007. p.289-309 -
3i
Galonic DP.Gin DY. Nature 2007, 446: 1000 -
3j
Toshima K. Carbohydr. Res. 2006, 341: 1282 -
3k
Demchenko AV.Kamat MN.De Meo C. Synlett 2003, 1287 -
3l
Demchenko AV. Curr. Org. Chem. 2003, 7: 35 -
3m
Hanessian S.Lou BL. Chem. Rev. 2000, 100: 4443 -
4a
Wu D.Fujio M.Wong CH. Bioorg. Med. Chem. 2008, 16: 1073 -
4b
Huang Y.Huang JH.Xie QJ.Yao SZ. Prog. Chem. 2008, 20: 942 -
4c
Fantini J. Curr. Med. Chem. 2007, 14: 2911 -
4d
Lalazar G.Preston S.Zigrnond E.Ben Yaacov A.Ilan Y. Mini-Rev. Med. Chem. 2006, 6: 1249 -
4e
Dwek RA. Chem. Rev. 1996, 96: 683 -
4f
Varki A. Glycobiology 1993, 3: 97 -
5a
Liu Y.Palma AS.Feizi T. Biol. Chem. 2009, 390: 647 -
5b
Pieters RJ. Org. Biomol. Chem. 2009, 7: 2013 -
5c
Nan G.Yan H.Yang GL.Jian Q.Chen C.Li Z. Curr. Pharm. Biotechnol. 2009, 10: 138 -
5d
Laurent N.Voglmeir J.Flitsch SL. Chem. Commun. 2008, 4400 -
5e
Horlacher T.Seeberger PH. Chem. Soc. Rev. 2008, 37: 1414 -
5f
Mrksich M. Chem. Soc. Rev. 2000, 29: 267 -
5g
Hernaiz MJ.de la Fuente JM.Barrientos AG.Penades S. Angew. Chem. Int. Ed. 2002, 41: 1554 -
6a
Garegg PJ.Konradsson P.Kvarnstrom I.Norberg T.Svensson SCT.Wigilius B. Acta Chem. Scand., Ser. B 1985, 39: 569 -
6b
Paulsen H. Angew. Chem., Int. Ed. Engl. 1982, 21: 155 - 7
Schmidt RR.Kinzy W. In Advances in Carbohydrate Chemistry and Biochemistry Vol. 50: Academic Press Inc; San Diego: 1994. p.21 -
8a
Codee JDC.Litjens R.van den Bos LJ.Overkleeft HS.van der Marel GA. Chem. Soc. Rev. 2005, 34: 769 -
8b
Garegg PJ. In Advances in Carbohydrate Chemistry and Biochemistry Vol. 52: Academic Press Inc; San Diego: 1997. p.179 -
8c
Fugedi P.Garegg PJ.Lonn H.Norberg T. Glycoconjugate J. 1987, 4: 97 - 9
Toshima K. Carbohydr. Res. 2000, 327: 15 - 10
Trincone A.Giordano A. Curr. Org. Chem. 2006, 10: 1163 - 11
Meloncelli PJ.Martin AD.Lowary TL. Carbohydr. Res. 2009, 344: 1110 -
12a
Morales-Serna JA.Boutureira O.Diaz Y.Matheu MI.Castillon S. Carbohydr. Res. 2007, 1595 -
12b
Morales-Serna JA.Boutureira O.Diaz Y.Matheu MI.Castillon S. Org. Biomol. Chem. 2008, 6: 443 -
13a
Gouin SG.Pilgrim W.Porter RK.Murphy PV. Carbohydr. Res. 2005, 340: 1547 -
13b
Milkereit G.Gerber S.Brandenburg K.Morr M.Vill V. Chem. Phys. Lipids 2005, 135: 1 -
13c
Katsuraya K.Ikushima N.Takahashi N.Shoji T.Nakashima H.Yamamoto N.Yoshida T.Uryu T. Carbohydr. Res. 1994, 260: 51 -
13d
Dahmen J.Frejd T.Gronberg G.Lave T.Magnusson G.Noori G. Carbohydr. Res. 1983, 116: 303 -
13e
Banoub J.Bundle DR. Can. J. Chem.-Rev. Can. Chim. 1979, 57: 2085 -
13f
Hanessian S.Banoub J. Carbohydr. Res. 1977, 59: 261 - 14
Murakami T.Hirono R.Sato Y.Furusawa K. Carbohydr. Res. 2007, 342: 1009 -
15a
Seebacher W.Haslinger E.Weis R. Monatsh. Chem. 2001, 132: 839 -
15b
Magnus V.Vikictopic D.Iskric S.Kveder S. Carbohydr. Res. 1983, 114: 209 -
15c
Wulff G.Schmidt W. Carbohydr. Res. 1977, 53: 33 -
16a
Murakami T.Sato Y.Shibakami M. Carbohydr. Res. 2008, 343: 1297 -
16b
Yao QJ.Song J.Xia CF.Zhang WP.Wang PG. Org. Lett. 2006, 8: 911 -
16c
Rai AN.Basu A. J. Org. Chem. 2005, 70: 8228 -
16d
Takeda Y.Horito S. Carbohydr. Res. 2005, 340: 211 -
16e
Yamamura T.Hada N.Kaburaki A.Yamano K.Takeda T. Carbohydr. Res. 2004, 339: 2749 -
16f
Compostella F.Franchini L.De Libero G.Palmisano G.Ronchetti F.Panza L. Tetrahedron 2002, 58: 8703 -
16g
Lindberg J.Svensson SCT.Pahlsson P.Konradsson P. Tetrahedron 2002, 58: 5109 -
16h
Gege C.Geyer A.Schmidt RR. Chem. Eur. J. 2002, 8: 2454 -
16i
Castro-Palomino JC.Simon B.Speer O.Leist M.Schmidt RR. Chem. Eur. J. 2001, 7: 2178 -
16j
Nicolaou KC.Li J.Zenke G. Helv. Chim. Acta 2000, 83: 1977 - 17
Presser A.Kunert O.Potschger I. Monatsh. Chem. 2006, 137: 365 -
18a
Pukin AV.Weijers C.van Lagen B.Wechselberger R.Sun B.Gilbert M.Karwaski MF.Florack DEA.Jacobs BC.Tio-Gillen AP.van Belkum A.Endtz HP.Visser GM.Zuilhof H. Carbohydr. Res. 2008, 343: 636 -
18b
Sun B.Pukin AV.Visser GM.Zuilhof H. Tetrahedron Lett. 2006, 47: 7371 -
18c
de Smet L.Pukin AV.Stork GA.de Vos CHR.Visser GM.Zuilhof H.Sudholter EJR. Carbohydr. Res. 2004, 339: 2599 -
19a
de Smet L.Pukin AV.Sun QY.Eves BJ.Lopinski GP.Visser GM.Zuilhof H.Sudholter EJR. Appl. Surf. Sci. 2005, 252: 24 -
19b
de Smet LCPM.Stork GA.Hurenkarnp GHF.Sun QY.Topal H.Vronen PJE.Sieval AB.Wright A.Visser GM.Zuilhof H.Sudholter EJR. J. Am. Chem. Soc. 2003, 125: 13916 -
20a
Sisu C.Baron AJ.Branderhorst HM.Connel SD.Weijers C.de Vries R.Hayes ED.Pukin AV.
GilbertPieters RJ.Zuilhof H.Visser GM.Turnbull WB. ChemBioChem 2009, 10: 329 -
20b
Pukin AV.Branderhorst HM.Sisu C.Weijers C.Gilbert M.Liskamp RMJ.Visser GM.Zuilhof H.Pieters RJ. ChemBioChem 2007, 8: 1500 - 21
Barrientos AG.de la Fuente JM.Rojas TC.Fernandez A.Penades S. Chem. Eur. J. 2003, 9: 1909 -
24a
Lemieux RU. Can. J. Chem.-Rev. Can. Chim. 1951, 29: 1079 -
24b
Lemieux RU.Brice C. Can. J. Chem.-Rev. Can. Chim. 1955, 33: 109
References and Notes
Data for 2b: ¹H NMR (400 MHz, C6D6): δ = 6.52 (d, J = 3.8 Hz, 1 H), 5.82 (t, J = 9.8 Hz, 1 H), 5.28 (t, J = 9.9 Hz, 1 H), 5.23 (dd, J = 10.0, 3.8 Hz, 1 H), 4.21-4.28 (m, 2 H), 4.08-4.14 (m, 1 H), 1.16 (s, 9 H), 1.12 (s, 9 H), 1.12 (s, 9 H), 1.09 (s, 9 H), 1.08 (s, 9 H); ¹³C NMR (100 MHz, C6D6): δ = 177.8, 177.2, 176.9, 176.8, 175.9, 89.5, 71.4, 70.5, 70.3, 68.5, 62.4, 39.4, 39.3, 39.2 (2 C, peaks overlap), 39.1, 27.7, 27.6, 27.5, 27.5, 27.4.
23Typical glycosylation procedure: To a solution of lactose octapivalate 1 (1 g, 0.99 mmol) and 8-chlorooctan-1-ol (4b; 243 µL, 1.48 mmol) in anhydrous toluene (10 mL), was added ZnCl2 (0.2 g, 1.48 mmol, which was dried in vacuo at 120 ˚C for at least 1 h prior to use) and the resulting suspension was stirred at 70 ˚C for 5 h. After cooling, the reaction mixture was diluted with EtOAc (10 mL), and solid NaHCO3 (2 g) and H2O (0.5 mL) were added portion-wise with stirring. After the formation of gas stopped (˜20 min), the solution was filtered over Hyflo. The precipitate was washed thoroughly with EtOAc. The combined organic phase was evaporated in vacuo and the residue was purified by silica gel column chromatography (EtOAc-petroleum ether, 1:7) to give 8-chlorooctyl lactoside 5b (0.97 g, 0.9 mmol, 91%) as a white foam. ¹H NMR (400 MHz, CDCl3): δ = 5.36 (d, J = 2.3 Hz, 1 H), 5.18 (t, J = 9.5 Hz, 1 H), 5.09 (dd, J = 10.5, 8.0 Hz, 1 H), 4.96 (dd, J = 10.5, 3.5 Hz, 1 H), 4.79 (dd, J = 9.7, 7.9 Hz, 1 H), 4.50 (d, J = 7.8 Hz, 1 H), 4.47-4.56 (m, 1 H), 4.44 (d, J = 8.0 Hz, 1 H), 4.18 (dd, J = 12.0, 5.0 Hz, 1 H), 4.04-4.11 (m, 1 H), 3.95-4.03 (m, 1 H), 3.88-3.94 (m, 1 H), 3.85 (t, J = 9.5 Hz, 1 H), 3.67-3.75 (m, 1 H), 3.47 (t, J = 6.8 Hz, 2 H), 3.44-3.53 (m, 1 H), 3.33-3.41 (m, 1 H), 1.65-1.75 (m, 2 H), 1.48 (t, J = 6.4 Hz, 2 H), 1.32-1.42 (m, 2 H), 1.22-1.28 (m, 6 H), 1.21 (s, 9 H), 1.19 (s, 9 H), 1.17 (s, 9 H), 1.15 (s, 9 H), 1.11 (s, 9 H), 1.11 (s, 9 H), 1.05 (s, 9 H); ¹³C NMR (101 MHz, CDCl3): δ = 177.7, 177.5, 177.2, 177.0, 176.7, 176.5, 175.9, 100.7, 100.0, 73.7, 73.3, 71.7, 71.6, 71.4, 71.3, 69.6, 68.8, 66.8, 61.7, 61.3, 44.9, 38.9-38.6 (7 C, peaks overlap), 32.5, 29.4, 29.0, 28.7, 27.3, 27.2, 27.1, 27.0 (3 C, peaks overlap), 26.9, 26.7, 25.8.