Subscribe to RSS
DOI: 10.1055/s-0029-1218345
Regiospecific Syntheses of 3-Aza-α-carbolines via Inverse Electron-Demand Diels-Alder Reactions of 2-Aminoindoles with 1,3,5-Triazines
Publication History
Publication Date:
03 November 2009 (online)
Abstract
The scope of 1,3,5-triazine inverse electron-demand Diels-Alder (IDA) reactions was expanded to include 2-aminoindoles as productive dienophiles leading to various 3-aza-α-carbolines in excellent yields. Furthermore, the two ester groups of the IDA product were differentiated via reduction of the C4-ester to its corresponding alcohol. This new IDA reaction could be potentially applied to the synthesis of various 3-aza-mescengrincin analogues that may possess neuroprotective activities.
Key words
2-aminoindoles - inverse electron-demand Diels-Alder reactions - heterocycles - 3-aza-α-carbolines - regiospecific syntheses
- Supporting Information for this article is available online:
- Supporting Information
- 1
Taylor EC. Bull. Soc. Chim. Belg. 1988, 97: 599 - 2
Takao KMR.Tadano K. Chem. Rev. 2005, 105: 4779 - 3
Boger DL.Weinreb SM. Hetero Diels-Alder Methodology in Organic Synthesis Vol. 47: Academic Press; New York: 1987. - 4
Boger DL.Dang Q. Tetrahedron 1988, 44: 3379 - 5
Boger DL.Kochanny MJ. J. Org. Chem. 1994, 59: 4950 - 6
Helbecque N.Moquin C.Bernier JL.Morel E.Guyot M.Henichart JP. Cancer Biochem. Biophys. 1987, 9: 271 - 7
Nantka-Namirski P.Kaczmarek L. Pol. J. Pharmacol. Pharm. 1978, 30: 569 - 8
Peczynska-Czoch W. Arch. Immunol. Ther. Exp. (Warsz) 1987, 35: 97 - 9
Peczynska-Czoch W. Arch. Immunol. Ther. Exp. (Warsz) 1987, 35: 103 - 10
Peczynska-Czoch W.Mordarski M.Kaczmarek L.Nantka-Namirski P. Arch. Immunol. Ther. Exp. (Warsz) 1987, 35: 109 - 11
Sasaki YF.Shirasu Y. Mutat. Res. 1993, 302: 165 - 12
Duval E.Cuny GD. In 229th ACS National Meeting ACS; Washington D.C. / San Diego: 2005. - 13
Shin-Ya K.Kim JS.Furihata K.Hayakawa Y.Seto H. J. Asian Nat. Prod. Res. 2000, 2: 121 - 14
Vera-Luque P.Alajarin R.Alvarez-Builla J.Vaquero JJ. Org. Lett. 2006, 8: 415 - 15
Seitz G.Kampchen T. Arch. Pharm. (Weinheim) 1976, 309: 679 - 16
Seitz G.Mohr R. Chem. Zeit. 1987, 111: 81 - 17
Haider N.Mereiter K.Wanko R. Heterocycles 1995, 41: 1445 - 18
Haider N.Kaferbock J. Tetrahedron 2004, 60: 6495 - 19
Lee L.Snyder JK. In Advances in Cycloaddition JAI Press Inc.; Stamford: 1999. - 20
Benson SC.Lee L.Yang L.Snyder JK. Tetrahedron 2000, 56: 1165 - 21
Benson SC.Gross JL.Snyder JK. J. Org. Chem. 1990, 55: 3257 -
23a
Forbes IT.Johnson CN.Thompson M. J. Chem. Soc., Perkin Trans. 1 1992, 275 -
23b
Forbes IT.Morgan HAK.Thompson M. Synth. Commun. 1996, 26: 745 -
23c
Munshi KL.Kohl H.de Souza NJ. J. Heterocycl. Chem. 1977, 14: 1145 -
23d
Glennon RA.von Strandtmann M. J. Heterocycl. Chem. 1975, 12: 135 - 25
Yu Z.-X.Dang Q.Wu Y.-D. J. Org. Chem. 2005, 70: 998 - 26
Yu Z.-X.Dang Q.Wu Y.-D. J. Org. Chem. 2001, 66: 6029 - 28
Dang Q.Gomez-Galeno JE. J. Org. Chem. 2002, 67: 8703 - 29
Boger DL.Honda T.Menezes RF.Colletti SL.Dang Q.Yang W. J. Am. Chem. Soc. 1994, 116: 82 - 30
Boger DL.Honda T.Dang Q. J. Am. Chem. Soc. 1994, 116: 5619
References and Notes
HOMO energies for indole and 8a are -124.5 kcal/mol and -114.1 kcal/mol, respectively (calculated using Spartan with the B3LYP/6-31G* method).
24HOMO energies for 8a, 8b, and 8c are -114.1, -113.2, and -113.9 kcal/mol, respectively (to simplify the calculation, the free base forms were used, using Spartan with the B3LYP/6-31G* method).
27CCDC 748786 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.