Abstract
The scope of 1,3,5-triazine inverse electron-demand Diels-Alder
(IDA) reactions was expanded to include 2-aminoindoles as productive
dienophiles leading to various 3-aza-α-carbolines in excellent
yields. Furthermore, the two ester groups of the IDA product were
differentiated via reduction of the C4-ester to its corresponding
alcohol. This new IDA reaction could be potentially applied to the
synthesis of various 3-aza-mescengrincin analogues that may possess
neuroprotective activities.
Key words
2-aminoindoles - inverse electron-demand Diels-Alder reactions - heterocycles - 3-aza-α-carbolines - regiospecific
syntheses
References and Notes
1
Taylor EC.
Bull.
Soc. Chim. Belg.
1988,
97:
599
2
Takao KMR.
Tadano K.
Chem. Rev.
2005,
105:
4779
3
Boger DL.
Weinreb SM.
Hetero
Diels-Alder Methodology in Organic Synthesis
Vol.
47:
Academic Press;
New York:
1987.
4
Boger DL.
Dang Q.
Tetrahedron
1988,
44:
3379
5
Boger DL.
Kochanny MJ.
J. Org. Chem.
1994,
59:
4950
6
Helbecque N.
Moquin C.
Bernier JL.
Morel E.
Guyot M.
Henichart JP.
Cancer Biochem. Biophys.
1987,
9:
271
7
Nantka-Namirski P.
Kaczmarek L.
Pol. J. Pharmacol. Pharm.
1978,
30:
569
8
Peczynska-Czoch W.
Arch.
Immunol. Ther. Exp. (Warsz)
1987,
35:
97
9
Peczynska-Czoch W.
Arch.
Immunol. Ther. Exp. (Warsz)
1987,
35:
103
10
Peczynska-Czoch W.
Mordarski M.
Kaczmarek L.
Nantka-Namirski P.
Arch. Immunol. Ther.
Exp. (Warsz)
1987,
35:
109
11
Sasaki YF.
Shirasu Y.
Mutat. Res.
1993,
302:
165
12
Duval E.
Cuny GD. In 229th
ACS National Meeting
ACS;
Washington
D.C. / San Diego:
2005.
13
Shin-Ya K.
Kim JS.
Furihata K.
Hayakawa Y.
Seto H.
J.
Asian Nat. Prod. Res.
2000,
2:
121
14
Vera-Luque P.
Alajarin R.
Alvarez-Builla J.
Vaquero
JJ.
Org. Lett.
2006,
8:
415
15
Seitz G.
Kampchen T.
Arch. Pharm. (Weinheim)
1976,
309:
679
16
Seitz G.
Mohr R.
Chem. Zeit.
1987,
111:
81
17
Haider N.
Mereiter K.
Wanko R.
Heterocycles
1995,
41:
1445
18
Haider N.
Kaferbock J.
Tetrahedron
2004,
60:
6495
19
Lee L.
Snyder JK. In
Advances in Cycloaddition
JAI Press
Inc.;
Stamford:
1999.
20
Benson SC.
Lee L.
Yang L.
Snyder JK.
Tetrahedron
2000,
56:
1165
21
Benson SC.
Gross JL.
Snyder JK.
J. Org. Chem.
1990,
55:
3257
22 HOMO energies for indole and 8a are -124.5 kcal/mol
and -114.1 kcal/mol, respectively (calculated
using Spartan with the B3LYP/6-31G* method).
23a
Forbes IT.
Johnson CN.
Thompson M.
J. Chem. Soc.,
Perkin Trans. 1
1992,
275
23b
Forbes IT.
Morgan HAK.
Thompson M.
Synth. Commun.
1996,
26:
745
23c
Munshi KL.
Kohl H.
de Souza NJ.
J. Heterocycl. Chem.
1977,
14:
1145
23d
Glennon RA.
von Strandtmann M.
J.
Heterocycl. Chem.
1975,
12:
135
24 HOMO energies for 8a , 8b , and 8c are -114.1, -113.2,
and -113.9 kcal/mol, respectively (to simplify
the calculation, the free base forms were used, using Spartan with
the B3LYP/6-31G* method).
25
Yu Z.-X.
Dang Q.
Wu Y.-D.
J.
Org. Chem.
2005,
70:
998
26
Yu Z.-X.
Dang Q.
Wu Y.-D.
J.
Org. Chem.
2001,
66:
6029
27 CCDC 748786 contains the supplementary
crystallographic data for this paper. These data can be obtained
free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
28
Dang Q.
Gomez-Galeno JE.
J. Org. Chem.
2002,
67:
8703
29
Boger DL.
Honda T.
Menezes RF.
Colletti SL.
Dang Q.
Yang W.
J. Am. Chem. Soc.
1994,
116:
82
30
Boger DL.
Honda T.
Dang Q.
J.
Am. Chem. Soc.
1994,
116:
5619