Synlett 2009(13): 2083-2088  
DOI: 10.1055/s-0029-1217702
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of Heterocycle-Annulated Medium-Sized Oxacycles and Lactone Derivative by Intramoleculer Heck Reaction

K. C. Majumdar*, Rajendra Narayan De, Buddhadeb Chattopadhyay, B. Roy
Department of Chemistry, University of Kalyani, Kalyani 741235, West Bengal, India
e-Mail: kcm_ku@yahoo.co.in;
Further Information

Publication History

Received 20 April 2009
Publication Date:
16 July 2009 (online)

Abstract

An efficient and convergent methodology for the highly strained medium-sized oxacyclic compounds and lactone derivatives has been developed via palladium-catalyzed intramoleculer Heck reaction.

    References and Notes

  • 1a Tsuji J. Palladium Reagents and Catalysts: New Perspective for the 21st Century   Wiley; Chichester: 2004. 
  • 1b Li JJ. Gribble GW. Palladium in Heterocyclic Chemistry: A Guide for the Synthetic Chemist   Pergamon; Amsterdam: 2000. 
  • 2a Negishi E. Anastasia L. Chem. Rev.  2003,  103:  1979 
  • 2b Negishi E. Coperet C. Ma S. Liou S.-Y. Liu F. Chem. Rev.  1996,  96:  365 
  • For some examples in which the coordination of N with metal controls or modifies the course transition-metal-promoted processes, see:
  • 3a Oestreich M. Dennison PR. Kodanko JJ. Overman LE. Angew. Chem. Int. Ed.  2001,  40:  1439 
  • 3b Mauleón P. Alonso I. Carretero JC. Angew. Chem. Int. Ed.  2001,  40:  1291 
  • 3c Olofsson K. Sahlin H. Larhed M. Hallberg A. J. Org. Chem.  2001,  66:  544 
  • 3d Solé D. Cancho Y. Llebaria A. Moretó JM. Delgado A. J. Am. Chem. Soc.  1994,  116:  12133 
  • 4 Majumdar KC. Sinha B. Chattopadhyay B. Ray K. Tetrahedron Lett.  2008,  49:  4405 
  • 5 Majumdar KC. Chattopadhyay B. Sinha B. Synthesis  2008,  3857 
  • 6 Majumdar KC. Chattopadhyay B. Samanta S. Tetrahedron Lett.  2009,  50:  3178 
  • 7a Majumdar KC. Alam S. Chattopadhyay B. Tetrahedron  2008,  64:  597 
  • 7b Majumdar KC. Bhattacharyya T. Chattopadhyay B. Sinha B. Synthesis  2009,  in press
  • 8a Majumdar KC. Chattopadhyay B. Taher A. Synthesis  2007,  3647 
  • 8b Majumdar KC. Pal AK. Taher A. Debnath P. Synthesis  2007,  1701 
  • 8c Majumdar KC. Chattopadhyay B. Synlett  2008,  979 
  • 8d Majumdar KC. Chattopadhyay B. Nath S. Tetrahedron Lett.  2008,  49:  1609 
  • 8e Majumdar KC. Chattopadhyay B. Pal AK. Lett. Org. Chem.  2008,  5:  276 
  • 8f Majumdar KC. Chattopadhyay B. Synthesis  2009,  in press
  • 8g Majumdar KC. Chattopadhyay B. Chakravorty S. Synthesis  2009,  674 
  • 9a Evans PA. Holmes AB. Tetrahedron  1991,  47:  9131 
  • 9b Mehta G. Singh V. Chem. Rev.  1999,  99:  881 
  • 9c Yet L. Chem. Rev.  2000,  100:  2963 
  • 10a Basil B. Coffee ECJ. Gell DL. Maxwell DR. Sheffield DJ. Wooldridge KRH. J. Med. Chem.  1970,  13:  403 
  • 10b Klayman DL. Scovill JP. Bartosevich JF. Mason CJ. J. Med. Chem.  1979,  22:  1367 
  • 10c Vedejs E. Galante RJ. Goekjian PG. J. Am. Chem. Soc.  1998,  120:  3613 
  • 10d Ma D. Tang G. Kozikowski AP. Org. Lett.  2002,  4:  2377 
  • 10e Staerk D. Witt M. Oketch-Rabah HA. Jaroszewski JW. Org. Lett.  2003,  5:  2793 ; and references cited therein
  • 11a Evans PA. Holmes AB. Russel K. Tetrahedron: Asymmetry  1990,  1:  593 
  • 11b Kitano T. Shirai N. Motoi M. Sato Y. J. Chem. Soc., Perkin Trans. 1  1992,  2851 
  • 11c Crombie L. Haigh D. Jones RCF. Mat-Zin AR. J. Chem. Soc., Perkin Trans. 1  1993,  2047 
  • 11d Coates WJ. Dhanak D. Heterocycles  1993,  36:  1631 
  • 11e Wright DL. Weekly RM. Groff R. McMills MC. Tetrahedron Lett.  1996,  37:  2165 
  • 11f Bergmann DJ. Campi EM. Jackson WR. Patti AF. Saylik D. Tetrahedron Lett.  1999,  40:  5597 
  • 11g Ouyang X. Kiselyov AS. Tetrahedron  1999,  55:  8295 
  • 12 Illuminati G. Mandolini L. Acc. Chem. Res.  1981,  14:  95 
  • 13 Nicolaou KC. Sorensen EJ. Classics in Total Synthesis   Wiley; New York: 1996.  Chap. 13.
  • 14a Grigg R. Sridharan V. Sukirthalingam S. Tetrahedron Lett.  1991,  32:  3855 
  • 14b Meyer FE. Parsons PJ. de Meijere A. J. Org. Chem.  1991,  56:  6487 
  • 14c Grigg R. Dorrity MJ. Malone JF. Sridharan V. Sukirthalingam S. Tetrahedron Lett.  1990,  31:  1343 
  • 14d Zhang Y. Negishi E.-i. J. Am. Chem. Soc.  1989,  111:  3454 
  • 15a Beletskaya IP. Cheprakov AV. Chem. Rev.  2000,  100:  3009 
  • 15b Majumdar KC. Chattopadhyay B. Curr. Org. Chem.  2009,  in press
  • 16 Gibson SE. Guillo N. Middleton RJ. Thuilliez A. Tozer MJ. J. Chem. Soc., Perkin Trans. 1  1997,  447 
  • 17a Gazith M. Noys RM. J. Am. Chem. Soc.  1955,  77:  6091 
  • 17b Gardner IJ. Noys RM. J. Am. Chem. Soc.  1961,  83:  2409 
  • 19a Larock RC. Yum EK. Refvik MD. J. Org. Chem.  1998,  63:  7652 
  • 19b Hallberge A. Ripa L. J. Org. Chem.  1997,  62:  595 
  • 19c Madin A. O’Donnell CJ. Oh T. Old DW. Overman LE. Sharp M. J. Am. Chem. Soc.  2005,  127:  18054 
  • 20a Vallin KSA. Emilsson P. Larhed M. Hallberg A. J. Org. Chem.  2002,  67:  6243 
  • 20b Wan Q.-X. Liu Y. Lu Y. Li M. Wu H.-H. Catal. Lett.  2008,  121:  331 
  • 20c Mo J. Xiao J. Angew. Chem. Int. Ed.  2006,  45:  4152 
  • 21a Hagiwara H. Sugawara Y. Hoshi T. Suzuki T. Chem. Commun.  2005,  2942 
  • 21b Botella L. Najera C. Tetrahedron Lett.  2004,  45:  1833 
  • 23 Leggy AA. Wenchen L. Guy RK. Org. Lett.  2004,  6:  3005 
18

General Procedure for the Synthesis of the Compound by Heck Reaction A mixture of 3a (70 mg, 0.182 mmol), TBAB (147 mg, 0.455 mmol), and dry KOAc (26 mg, 0.265 mmol) was taken in dry DMF (10 mL). Pd(OAc)2 (10 mol%, 4.1 mg) was added, and the mixture was stirred on an oil bath at 110 ˚C for ca. 2 h. The reaction mixture was cooled, DMF was removed under reduced pressure, H2O (3 mL) was added and extracted with EtOAc (3 × 20 mL) and washed with H2O (2 × 20 mL), followed by brine (20 mL). The organic layer was dried (Na2SO4), and the solvent was distilled off to furnish a viscous mass which was purified by column chromatography over silica gel. Elution of the column with 20% EtOAc-hexane afforded the product 8a. Similarly, other compounds were synthesized.
Compound 8a: white solid, mp 174 ˚C. IR (KBr): 2918, 2899, 1643, 1600 cm . ¹H NMR (400 MHz, CDCl3): δ = 3.66 (s, 3 H, NCH3), 4.02 (s, 2 H,=CCH2), 5.17 (s, 1 H, =CHa), 5.42 (s, 1 H, =CHb), 5.48 (s, 2 H, OCH2), 7.12-7.19 (m, 4 H, ArH), 7.20 (t, 1 H, J = 7.88 Hz, ArH), 7.25 (d, 1 H, J = 5.2 Hz, ArH), 7.43 (t, 1 H, J = 7.80 Hz, ArH), 7.65 (d, 1 H, J = 7.96 Hz, ArH). ¹³C NMR (75 MHz, CDCl3): δ = 29.67, 36.98, 73.86, 114.17, 114.26, 120.53, 122.31, 123.83, 127.86, 128.37, 128.45, 128.65, 128.69, 133.47, 133.93, 137.01, 141.33, 143.94, 148.03, 159.00. MS (TOF MS ES+): m/z = 326.13 [M + Na+]. Anal. Calcd (%) for C20H17NO2: C, 79.19; H, 5.65; N, 4.62. Found: C, 79.29; H, 5.77; N, 4.57.

22

The spectral data, especially NMR studies, showed that the OCH2 protons appears as two separate singlets which is further supported by the DEPT experiment. DEPT contains two extra methylene groups due to the rapid interconversion of the existing possible conformers.
Compound 10b: yellow solid, mp 250 ˚C. IR (KBr): 2941, 2838, 1647, 1625 cm . ¹H NMR (300 MHz, CDCl3): δ = 3.45-3.61 (m, 2 H, =CHCH 2), 3.80 (s, 3 H, OCH3), 4.89 (s, 1 H, OCHa), 5.44 (s, 1 H, OCHb), 6.74 (d, 1 H, J = 11.4 Hz, =CHa), 7.11-7.15 (m, 1 H, =CHb), 7.19-7.22 (m, 5 H, ArH), 7.43-7.54 (m, 4 H, ArH), 8.23 (d, 1 H, J = 7.5 Hz, ArH), 8.46 (d, 1 H, J = 3.2 Hz, ArH). ¹³C NMR (75 MHz, CDCl3): δ = 31.6, 59.4, 109.2, 112.6, 112.7, 115.1, 119.2, 125.3, 125.8, 128.5, 128.9, 129.5, 136.0, 136.7, 138.8, 138.3, 154.1, 154.7, 159.8, 172.5, 194.6. (TOF MS ES+):
m/z = 419.08 [M + Na]. Anal. Calcd (%) for C25H20N2O3: C, 75.74; H, 5.08; N, 7.07. Found: C, 75.81; H, 5.03; N, 7.21.