Synlett 2009(13): 2167-2171  
DOI: 10.1055/s-0029-1217566
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of Fluorinated Analogues of Tumor-Associated Carbohydrate and Glycopeptide Antigens

Christian Mersch, Sarah Wagner, Anja Hoffmann-Röder*
Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
Fax: +49(6131)3924786; e-Mail: hroeder@uni-mainz.de;
Further Information

Publication History

Received 20 April 2009
Publication Date:
15 July 2009 (online)

Abstract

Partial structures of tumor-associated mucin glycoproteins are interesting target structures for the development of selective anticancer vaccines. To probe the effect of fluorination on the immunological and metabolic properties of mucin glycopeptides, six novel fluorinated glycosyl-threonine conjugates have been synthesized. The synthesis of the orthogonally protected glycosyl amino acids was achieved using microwave irradiation in key fluorination and glycosylation steps. The 2′-deoxy-2′-fluoro- and 6′-deoxy-6′-fluoro-T antigen building blocks were applied to the synthesis of analogues of MUC1 tandem repeat-glycopeptide antigens via SPPS.

    References and Notes

  • 1a Varki A. Glycobiology  1993,  3:  97 
  • 1b Lis H. Sharon N. Eur. J. Biochem.  1993,  218:  1 
  • 1c Dwek RA. Chem. Rev.  1996,  96:  683 
  • 2a Feizi T. Nature (London)  1985,  314:  53 
  • 2b Springer GF. Science  1984,  224:  1198 
  • Reviews:
  • 3a Taylor-Papadimitriou J. Burchell JM. Miles DW. Dalziel M. Biochim. Biophys. Acta Mol. Basis Dis.  1999,  1455:  301 
  • 3b Hanisch FG. Biol. Chem.  2001,  382:  143 
  • 3c Dziadek S. Espínola CG. Kunz H. Aust. J. Chem.  2003,  56:  519 
  • 3d Becker T. Dziadek S. Wittrock S. Kunz H. Curr. Cancer Drug Targets  2006,  6:  491 
  • 3e Liakatos A. Kunz H. Curr. Opin. Mol. Ther.  2007,  9:  35 
  • 4a Glaudemans CPJ. Chem. Rev.  1991,  91:  25 
  • 4b Namchuk M. Braun C. McCarter JD. Withers SG. In Biomedical Frontiers of Fluorine Chemistry, ACS Symposium Series   Vol. 639:  Ojima I. McCarthy JR. Welch JT. American Chemical Society; Washington DC: 1996.  p.279 
  • 5a Lemieux RU. Cromer R. Spohr U. Can. J. Chem.  1988,  66:  3083 
  • 5b Glaudemans CPJ. Kováč P. Rao AS. Carbohydr. Res.  1989,  190:  267 
  • 5c Holm B. Baquer SM. Holm L. Holmdahl R. Kihlberg J. Bioorg. Med. Chem.  2003,  11:  3981 
  • 6 Tsuchiya T. Adv. Carbohydr. Chem. Biochem.  1990,  48:  91 
  • 7a Card PJ. J. Carbohydr. Chem.  1985,  4:  451 
  • 7b Dax K. Albert M. Ortner J. Paul B. J. Carbohydr. Res.  2000,  327:  47 
  • 7c Miethchen R. J. Fluorine Chem.  2004,  125:  895 
  • 8a Rexford LT. Saeed AA. Matta KL. Carbohydr. Res.  1987,  165:  C14 
  • 8b Xia J. Alderfer JL. Piskorz CF. Locke RD. Matta KL. Synlett  2003,  1291 
  • 8c Xia J. Xue J. Locke RD. Chandrasekaran EV. Srikrishnan T. Matta KL. J. Org. Chem.  2006,  71:  3696 
  • 9a Vincent SP. Burkart MD. Tsai C.-Y. Zhang Z. Wong C.-H. J. Org. Chem.  1999,  64:  5264 
  • 9b Albert M. Paul BJ. Dax K. Synlett  1999,  1483 
  • 9c Maschauer S. Pischetsrieder M. Kuwert T. Prante O. J. Labelled Compd. Radiopharm.  2005,  48:  701 
  • 9d Maschauer S. Kuwert T. Prante O. J. Labelled Compd. Radiopharm.  2006,  49:  101 
  • 10a Brocke C. Kunz H. Synlett  2003,  2052 
  • 10b Brocke C. Kunz H. Synthesis  2004,  525 
  • 11a Burkart MD. Vincent SP. Düffels A. Murray BW. Ley SV. Wong C.-H. Bioorg. Med. Chem.  2000,  8:  1937 
  • 11b Brackhagen M. Boye H. Vogel C. J. Carbohydr. Chem.  2001,  20:  31 
  • 11c Kobayashi S. Yoneda A. Fukuhara T. Hara S. Tetrahedron Lett.  2004,  45:  1287 
  • 13 Kent PW. Wright JR. Carbohydr. Res.  1972,  22:  193 
  • 14 Lemieux RU. Ratcliffe RM. Can. J. Chem.  1979,  57:  1244 
  • 15a Koenigs W. Knorr E. Ber. Dtsch. Chem. Ges.  1901,  34:  957 
  • 15b Paulsen H. Hölck J.-P. Carbohydr. Res.  1982,  109:  89 
  • 16a Paulsen H. Adermann K. Liebigs Ann. Chem.  1989,  751 
  • 16b Kunz H. In Preparative Carbohydrate Chemistry   Hanessian S. Marcel Dekker; New York: 1997.  p.265 
  • 17a Liebe B. Kunz H. Angew. Chem., Int. Ed. Engl.  1997,  36:  618 
  • 17b Liebe B. Kunz H. Helv. Chim. Acta  1997,  80:  1473 
  • 18 Schmidt RR. Stumpp M. Liebigs Ann. Chem.  1983,  1249 
  • 20 Dziadek S. Brocke C. Kunz H. Chem. Eur. J.  2004,  10:  4150 
  • 21a Marra A. Sinaÿ P. Carbohydr. Res.  1989,  187:  35 
  • 21b Keil S. Claus C. Dippold W. Kunz H. Angew. Chem. Int. Ed.  2001,  40:  366 
  • 22a Withers SG. Street IP. Bird P. Dolphin DH. J. Am. Chem. Soc.  1987,  109:  7530 
  • 22b Withers SG. Rupitz K. Street IP. J. Biol. Chem.  1988,  263:  7929 
  • 23a Barbieri L. Costantino V. Fattorusso E. Mangoni A. Basilico N. Mondani M. Taramelli D. Eur. J. Org. Chem.  2005,  3279 
  • 23b Kasuya MC. Ito A. Hatanaka K. J. Fluorine Chem.  2007,  128:  562 
  • 23c Benito D. Matheu MI. Morère A. Díaz Y. Castillón S. Tetrahedron  2008,  64:  10906 
  • 24 Review: Nyffeler PT. Durón SG. Burkart MD. Vincent SP. Wong C.-H. Angew. Chem. Int. Ed.  2005,  44:  192 
  • 26 Burchell J. Taylor-Papadimitriou J. Boshell M. Gendler SJ. Duhig T. Int. J. Cancer  1989,  44:  691 
  • 28 Carpino LA. Han GY. J. Am. Chem. Soc.  1970,  92:  5748 
  • 30 Knorr R. Trzeciak A. Bannwarth W. Gillessen D. Tetrahedron Lett.  1989,  30:  1927 
  • 31a Carpino LA. J. Am. Chem. Soc.  1993,  115:  4397 
  • 31b Carpino LA. El-Faham AS. Minor C. Albericio F. J. Chem. Soc., Chem. Commun.  1994,  201 
12

CEM Discover microwave reactor.

19

Typical Experimental Procedure
A solution of acceptor 7 (150 mg, 0.25 mmol) in anhyd MeNO2-CH2Cl2 (3:2, 4 mL) was stirred with Hg(CN)2 (125 mg, 0.49 mmol) and activated pulverized MS 4 Å (200 mg) for 30 min under argon. A solution of donor 3 (185 mg, 0.49 mmol) in anhyd MeNO2-CH2Cl2 (3:2, 4 mL) was added, and the reaction mixture was irradiated in a microwave reactor for 5 h (80 ˚C, 100 W), diluted with CH2Cl2 (20 mL), and filtered through Hyflo Supercel. The filtrate was washed with sat. aq NaHCO3 (10 mL) and brine (10 mL), dried (MgSO4), and concentrated in vacuo. Flash chromatography on silica gel (cyclohexane-EtOAc, 5:1) afforded 9 as a colorless, amorphous solid (162 mg, 73%); R f = 0.53 (cyclohexane-EtOAc, 5:1); [α]D ²³ 39.42 (c 1, CHCl3).

25

Compound β-20
[α]D ²³ = 55.74 (c 1, CHCl3); t R = 14.6 min [Perfectsil C18, grad.: MeCN-H2O, (50:50) → (90:10), 30 min → (100:0), 10 min]. ¹H NMR (400 MHz, CDCl3, COSY): δ = 5.43 (d, 1 H, 4-H, J 3,4 = 2.0 Hz), 5.36-5.32 (m, 1 H, 4′-H), 5.10-5.00 (m, 1 H, 3′-H), 4.87 (d, 1 H, 1-H, J 1,2 = 3.5 Hz), 4.65 (dt, 1 H, 2-H, J 2,1 = 3.6 Hz, J 2,3 = 10.6 Hz), 4.60-4.37 (m, 4 H, 1′-H {4.57}, 2′-H, CH2 (Fmoc) {4.52}), 4.29-4.08 (m, 6 H, Tα {4.23}, Tβ {4.16}, 6a-H {4.11}, 5′-H {4.13}, 6a′-H {4.21}, 9-H (Fmoc) {4.22}), 4.03-3.84 (m, 3 H, 5-H, 6b-H, 6b′-H), 4.03-3.94 (m, 1 H, 3′-H), 3.79 (dd, 1 H, 3-H, J 3,4 = 3.2 Hz, J 2,3 = 11.0 Hz), 2.12 [s, 3 H, CH3(Ac)], 2.10 [s, 3 H, CH3(Ac)], 2.03 [s, 9 H, 3 × CH3(Ac)], 1.97 [s, 3 H, CH3(NHAc)], 1.44 [s, 9 H, CH3(t-Bu)], 1.28 (d, 3 H, Tγ, J T γ ,Tβ = 6.1 Hz) ppm. ¹³C NMR (100.6 MHz, CDCl3, BB, HMQC): δ = 101.9 (d, C1′, J C1 ,F = 23.5 Hz), 100.3 (C1), 87.8 (d, C2′, J C2 ,F = 186.2 Hz), 83.2 [Cq(t-Bu)], 77.5 (C3), 77.2 (Tβ), 70.8 (d, C3′, J C3 ,F = 19.1 Hz), 70.5 (C5), 69.0 (C4), 68.1 (C5′), 67.2 (d, C4′, J C4 ,F = 8.0 Hz,), 66.8 (CH2-Fmoc), 63.2 (C6′), 60.8 (C6) 59.0 (Tα), 48.0 (C2), 47.2 (CH-Fmoc), 28.0 [CH3(t-Bu)], 23.0 [CH3(NHAc)], 20.8, 20.7, 20.6, 20.5, 20.5 [CH3 (Ac)], 18.5 (Tγ) ppm. ESI-MS (pos. ion mode): m/z calcd for C47H59FN2NaO19: 997.36; found: 997.34 [M + Na]+.

27

Applied Biosystems 433A peptide synthesizer.

29

Rapp Polymere GmbH.

32

Compound 22
[α]D ²5 = -97.61 (c 1, CHCl3); t R = 21.2 min [Luna C18, grad.: MeCN-H2O + 0.1% TFA, (5:95) → (50:50), 80 min → (100:0), 20 min]. ¹H NMR (400 MHz, DMSO-d 6, COSY): δ = 8.25 (d, 1 H, RNH, J NH, α = 7.2 Hz), 8.21 (d, 1 H, DNH, J NH, α = 8.7 Hz), 8.10 (d, 1 H, ANH, J NH, α = 7.3 Hz) 8.00 (d, 1 H, ANH, J NH, α = 7.3 Hz), 7.92 (d, 1 H, SNH, J NH, α = 8.0 Hz), 7.61-7.53 (m, 2 H, TNH {7.56}, RGua {7.58}), 6.93 (d, 1 H, NH-GalNAc, J NH,2 = 8.7 Hz), 4.69-4.62 (m, 2 H, 1-H {4.67}, Dα {4.65}), 4.58 (m, 1 H, 6′a-H), 4.54-4.43 (m, 3 H, Aα {4.51}, Rα {4.47}, 6′b-H {4.47}), 4.43-4.36 (m, 2 H, Aα {4.40}, Tα {4.39}), 4.36-4.29 (m, 2 H, 2 × Pα {4.33}, {4.31}), 4.28-4.23 (m, 2 H, Sα {4.26}, 1′-H {4,24}), 4.20 (dd, 1 H, Pα, J α , β a = 4.4 Hz, J α , β b = 8.7 Hz), 4.17-4.12 (m, 1 H, 2-H), 4.11-4.08 (m, 1 H, Tβ), 3.89-3.85 (m, 1 H, 4-H), 3.76-3.60 (m, 3 H, 5′-H {3.69}, 5-H {3.65}, 4′-H {3.63}), 3.61-3.38 (m, 11 H, Sβ {3.52}, 3 × Pδ {3.54}, 6a-H {3.43}, 6b-H {3.41}, 3-H {3.57}), 3.35-3.28 (m, 2 H, 2′-H {3.52}, 4′-H {3.30}), 3.15-3.01 (m, 2 H, Rδ), 2.75 (dd, 1 H, Dβ a, J β a , α = 6.4 Hz, J β a , β b = 16.5 Hz), 2.49 (m, 1 H, Dβ b, under DMSO-d 6), 2.18-2.09 (m, 1 H, Pβ a), 2.07-1.97 (m, 2 H, 2 × Pβ a, {2.06}, {2.01}), 1.94-1.74 [m, 15 H, 6 × Pγ {1.91}, {1.88}, {1.83}, 3 × Pβ b {1.84}, {1.81}, {1.78}, 2 × CH3 (NHAc)], 1.73-1.65 (m, 1 H, Rβ a), 1.59-1.42 (m, 3 H, Rβ, {1.52}, Rβ b {1.49}), 1.19 (d, 3 H, Aβ, J α , β = 7.4 Hz), 1.17 (d, 3 H, Aβ, J α , β = 7.4 Hz), 1.10 (d, 3 H, Tγ, J β , γ = 6.4 Hz) ppm. ¹³C NMR (100.6 MHz, CDCl3, BB, HMQC): δ = 173.3, 171.9, 171.8, 171.0, 170.8, 170.5, 170.5, 169.7, 169.7, 169.6, 169.4 (12 × C=O), 156.8 (C=N), 104.8 (C1′), 98.6 (C1), 83.3 (d, C6′, J C6 ,F = 166.9 Hz), 78.8 (C3), 75.0 (Tβ), 73.1 (d, C5′, J C5 ,F = 19.1 Hz), 72.5 (C3′), 71.3 (C5), 70.5 (C2′), 68.0 (d, C4′, J C4 ,F = 6.5 Hz), 67.8 (C4), 61.8 (Sβ), 60.6 (C6), 59.5, 59.0, 58.5 (3 × Pα), 55.8 (Tα), 55.0 (Sα), 50.1 (Rα), 49.3 (Dα), 48.0 (C2), 46.7, 46.5, 46.3, 46.3 (2 × Aα, 3 × Pδ), 40.5 (Rδ), 35.9 (Dβ), 29.1, 28.8, 28.6 (3 × Pβ), 28.3 (Rβ), 24.8 (Rγ), 24.6, 24.4, 24.3 (3 × Pγ), 23.1, 22.6 [2 × CH3(NHAc)], 18.3 (Tγ) 17.1, 16.6 (2 × Aβ) ppm. ESI-MS (pos. ion mode): m/z calcd for C54H87FN13O24: 1320.59; found: 1320.60 [M + H]+.