Synlett 2009(12): 1923-1928  
DOI: 10.1055/s-0029-1217538
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of β-Amino Alcohols via the Reduction of Lactamides Derived from Ethyl (2S)-Lactate with Borane-Methyl Sulfide

Frank W. Lewis, Matthias C. Eichler, David H. Grayson*
Centre for Synthesis and Chemical Biology, University Chemical Laboratory, Trinity College, Dublin 2, Ireland
Fax: +353(1671)2826; e-Mail: dgrayson@tcd.ie;
Further Information

Publication History

Received 30 March 2009
Publication Date:
03 July 2009 (online)

Abstract

Reactions of ethyl (2S)-lactate with various amines affords lactamides that are reduced with borane-methyl sulfide in the presence of boron trifluoride etherate to generate enantiomerically pure β-amino alcohols in good yield.

    References and Notes

  • 2a Handbook of Reagents for Organic Synthesis: Chiral Reagents for Asymmetric Synthesis   Paquette LA. Wiley; Chichester: 2003. 
  • 2b Asymmetric Synthesis - The Essentials   Christmann M. Bräse S. Wiley-VCH; Weinheim: 2007. 
  • 3a Compendium of Chiral Auxiliary Applications   Roos G. Academic Press; New York: 2002. 
  • 3b Gnas Y. Glorius F. Synthesis  2006,  1899 
  • 4a Soai K. Niwa S. Chem. Rev.  1992,  92:  833 
  • 4b Knochel P. Singer RD. Chem. Rev.  1993,  93:  2117 
  • 4c Pu L. Yu H.-B. Chem. Rev.  2001,  101:  757 
  • 5a Evans DA. Aldrichimica Acta  1982,  15:  23 
  • 5b Ager DJ. Prakash I. Schaad DR. Aldrichimica Acta  1997,  30:  3 
  • 6a Meyers AI. Lutomski KA. Acc. Chem. Res.  1978,  11:  375 
  • 6b Gant TG. Meyers AI. Tetrahedron  1994,  50:  2297 
  • 6c Meyers AI. J. Org. Chem.  2005,  70:  6137 
  • 7 Dimitrov V. Kostova K. Lett. Org. Chem.  2006,  3:  176 
  • 8 Gladiali S. Alberico E. Chem. Soc. Rev.  2006,  35:  226 
  • From the reduction of α-amino ketones:
  • 9a Tramontini M. Synthesis  1982,  605 
  • 9b Hoffman RV. Maslouh N. Cervantes-Lee F. J. Org. Chem.  2002,  67:  1045 
  • 9c Fraser DS. Park SB. Chong JM. Can. J. Chem.  2004,  82:  87 
  • From the manipulation of cyanohydrins:
  • 9d Jackson WR. Jacobs HA. Jayatilake GS. Matthews BR. Watson KG. Aust. J. Chem.  1990,  43:  2045 
  • From nucleophilic additions to α-amino aldehydes:
  • 9e Reetz MT. Angew. Chem., Int. Ed. Engl.  1991,  30:  1531 
  • From nucleophilic additions to chiral imine derivatives:
  • 9f Tang TP. Volkman SK. Ellman JA. J. Org. Chem.  2001,  66:  8772 
  • 9g Barrow JC. Ngo PL. Pellicore JM. Selnick HG. Nantermet PG. Tetrahedron Lett.  2001,  42:  2051 
  • From the reduction of nitrogen-stabilized oxallyl cation [4+3] cycloadducts:
  • 9h Huang J. Ianni JC. Antoline JE. Hsung RP. Kozlowski MC. Org. Lett.  2006,  8:  1565 
  • 10a Karrer P. Portmann P. Suter M. Helv. Chim. Acta  1948,  31:  1617 
  • 10b Seki H. Koga K. Matsuo H. Ohki S. Matsuo I. Yamada S. Chem. Pharm. Bull.  1965,  13:  995 
  • 10c Prasad B. Saund AK. Bora JM. Mathur NK. Ind. J. Chem.  1974,  12:  290 
  • 10d Smith GA. Gawley RE. Org. Synth.  1985,  63:  136 
  • 10e Gage JR. Evans DA. Org. Synth.  1989,  68:  77 
  • 10f Giannis A. Sandhoff K. Angew. Chem., Int. Ed. Engl.  1989,  28:  218 
  • 10g Dickman DA. Meyers AI. Smith GA. Gawley RE. Organic Syntheses   Collect Vol. VII:  Wiley and Sons; New York: 1990.  p.530 
  • 10h Dharanipragada R. Alarcon A. Hruby VJ. Org. Prep. Proced. Int.  1991,  23:  396 
  • 10i Abiko A. Masamune S. Tetrahedron Lett.  1992,  33:  5517 
  • 10j McKennon MJ. Meyers AI. Drauz K. Schwarm M. J. Org. Chem.  1993,  58:  3568 
  • 11a Hodgson DM. Gibbs AR. Lee GP. Tetrahedron  1996,  52:  14361 
  • 11b Comprehensive Organic Synthesis   Part 1.3.4.1., Vol. 6:  Mitsunobu O. Winterfeldt E. Pergamon; New York: 1996. 
  • 11c Ager DJ. Prakash I. Schaad DR. Chem. Rev.  1996,  96:  835 
  • 11d Bergmeier SC. Tetrahedron  2000,  56:  2561 
  • 13a Ratchford WP. Fisher CH. J. Org. Chem.  1950,  15:  317 
  • 13b Fein ML. Filachione EM. J. Am. Chem. Soc.  1953,  75:  2097 
  • 13c Shapiro SL. Rose IM. Freedman L. J. Am. Chem. Soc.  1959,  81:  6322 
  • 13d Dukes M. Smith LH. J. Med. Chem.  1971,  14:  326 
  • With LiAlH4:
  • 14a

    See ref. 13d.

  • 14b Yoneyama K. Ichizen N. Konnai M. Takematsu T. Ushinohama K. Jikihara T. Agric. Biol. Chem.  1984,  48:  995 
  • 14c Lai J.-Y. Shi X.-X. Gong Y.-S. Dai L.-X. J. Org. Chem.  1993,  58:  4775 
  • With NaBH4/H2SO4:
  • 14d Taoka N, Yasohara Y, Yao T, Maehara K, and Ueda Y. inventors; WO  2002070482. 
  • 15 Cobb AJA. Marson CM. Tetrahedron  2005,  61:  1269 
  • 16a Brown HC. Narasimhan S. Choi YM. Synthesis  1981,  996 
  • 16b Brown HC. Choi YM. Narasimhan S.
    J. Org. Chem.  1982,  47:  3153 
  • 19 Lactamides 8a-d have recently been used as chiral auxiliaries, see: Ammazzalorso A. Amoroso R. Bettoni G. De Filippis B. Fantacuzzi M. Giampietro L. Maccallini C. Tricca ML. Eur. J. Org. Chem.  2006,  4088 
  • Compound 8a:
  • 20a

    See ref. 13a.

  • 20b Ito Y. Kobayashi Y. Kawabata T. Takase M. Terashima S. Tetrahedron  1989,  45:  5767 
  • 20c Schurig V. Betschinger F. Bull. Soc. Chim. Fr.  1994,  131:  555 
  • Compound 8b:
  • 20d

    See ref. 13a.

  • 20e Schurig V. Hintzer K. Leyrer U. Mark C. Pitchen P. Kagan HB. J. Organomet. Chem.  1989,  370:  81 
  • 20f

    See ref. 20c. Compound 8c:

  • 20g

    See ref. 13a.

  • 20h Tasaka A. Tamura N. Matsushita Y. Teranishi K. Hayashi R. Chem. Pharm. Bull.  1993,  41:  1035 
  • 20i Upadhayaya R.-S. Sinha N. Jain S. Kishore N. Chandra R. Arora S.-K. Bioorg. Med. Chem.  2004,  12:  2225 
  • Compound 8d:
  • 20j

    See ref. 19. Racemic 8f:

  • 20k

    See ref 13a,c. Compound 8g:

  • 20l Adamczyk M. Grote J. Rege S. Tetrahedron: Asymmetry  1997,  8:  2509 
  • Compound 8h:
  • 20m Savinov SN. Austin DJ. Org. Lett.  2002,  4:  1415 
  • Compound 8i:
  • 20n

    See ref. 14c. Compound 8j:

  • 20o Harada K. Munegumi T. Nomoto S. Tetrahedron Lett.  1981,  22:  111 
  • 20p Harada K. Munegumi T. Bull. Chem. Soc. Jpn.  1984,  57:  3203 
  • 20q

    See ref. 14c. Compound 8l:

  • 20r Kern T. Makromol. Chem.  1955,  16:  89 
  • Compound 8m:
  • 20s Tounsi N. Dupont L. Mohamadou A. Cadiou C. Aplincourt M. Plantier-Royon R. Massicot F. Portella C. New J. Chem.  2004,  28:  785 
  • Compound 8n:
  • 20t

    See ref. 20s.

  • Racemic 9a:
  • 21a Reid WB. Wright JB. Kolloff HG. Hunter JH. J. Am. Chem. Soc.  1948,  70:  3100 
  • 21b Halverstadt IF. Hardie WR. Williams AR. J. Am. Chem. Soc.  1959,  81:  3618 
  • 21c Azizi N. Saidi MR. Org. Lett.  2005,  7:  3649 
  • Compound 9b:
  • 21d Rojkovicova T. Lehotay J. Cizmarik J. Pharmazie  2003,  58:  483 
  • 21e Martin-Matute B. Edin M. Bogar K. Kaynak FB. Baeckvall J.-E. J. Am. Chem. Soc.  2005,  127:  8817 
  • Compound 9c:
  • 21f Angeloni AS. Gazz. Chim. Ital.  1977,  107:  421 
  • Racemic 9d:
  • 21g Redel B. Bull. Soc. Chim. Fr.  1955,  92:  1411 
  • 21h Bourquin J.-P. Schwarb G. Gamboni G. Fischer R. Ruesch L. Guldimann S. Theus V. Schenker E. Renz J. Helv. Chim. Acta  1958,  41:  1072 
  • Racemic 9g:
  • 21i Beckett M. J. Pharm. Pharmacol.  1968,  20:  218 
  • Compound 9h:
  • 21j Kashima C. Harada K. J. Chem. Soc., Perkin Trans. 1  1988,  1521 
  • 21k Brun EM. Gil S. Parra M. Tetrahedron: Asymmetry  2001,  12:  915 
  • 21l Gawronski J. Kolbon H. Kwit M. Enantiomer  2002,  7:  85 
  • Compound 9i:
  • 21m

    See ref. 14b.

  • 21n

    See ref. 14c. Compound 9j:

  • 21o

    See ref. 14b.

  • 21p

    See ref. 14c. Racemic 9k:

  • 21q Steck EA. Buck JS. Fletcher LT. J. Am. Chem. Soc.  1957,  79:  4414 
  • 21r Hall JL. Dean WE. Pacovsky EA. J. Am. Chem. Soc.  1960,  82:  3303 
  • 21s Butula I. Karlovic G. Justus Liebigs Ann. Chem.  1976,  1455 
1

New address: F. W. Lewis, Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK.

12

Cost per gram from Aldrich Chemical Company: ethyl (2S)-lactate: £0.05; (2S)-2-methyloxirane: £8.66.

17

Synthesis of Lactamides 8a-n - General Procedure
Ethyl (2S)-lactate (7, 88.2 mmol, 1 equiv) and the appropriate amine (114.6 mmol, 1.3 equiv) were placed in a flask and heated under reflux for 24 h. The solution was allowed to cool to r.t., the volatiles were removed under reduced pressure (1.33˙10-4 bar), and the lactamide was purified by vacuum distillation or recrystallization. For the synthesis of bislactamides 8k and 8l, 0.5 equiv of amine were used. Compounds 8a-d,f-j,l-n are known.²0 Characterization Data for 8e
Yellow oil, bp 101-104 ˚C (1.33˙10-4 bar). [α]D ¹6 -16.6 (c 1.31, CHCl3). IR (neat): 3308 (OH, NH), 2978, 1655 (C=O), 1532, 1457, 1364, 1275, 1124, 1048, 978 cm. ¹H NMR (400.1 MHz, CDCl3): δ = 6.90 (s, 1 H, exch. D2O, NH), 4.18 (q, J = 6.5 Hz, 1 H, CHOH), 3.84 (br s, 1 H, exch. D2O, OH), 2.67-2.74 (m, 1 H, CH), 1.39 (d, J = 6.5 Hz, 3 H, CH3), 0.72-0.84 (m, 2 H, CH2), 0.46-0.58 (m, 2 H, CH2). ¹³C NMR (100.6 MHz, CDCl3): δ = 176.1 (C=O), 67.7 (CHOH), 21.6 (CH), 20.6 (CH3), 5.9 (CH2), 5.8 (CH2). HRMS (EI, MeOH): m/z calcd for C6H11NO2 [M + Na]+: 152.0687; found: 152.0680.
Characterization Data for 8k
White solid, mp 97-98 ˚C (10% EtOH in THF). [α]D ¹6 -24.7 (c 1.96, MeOH). IR (Nujol): 3323 (OH), 3086 (NH), 2926, 1662 (C=O), 1561, 1458, 1368, 1310, 1274, 1223, 1129, 1079, 937 cm. ¹H NMR (400.1 MHz, DMSO-d 6): δ = 7.81 (s, 1 H, exch. D2O, NH), 5.48 (s, 1 H, exch. D2O, NH), 3.94 (q, J = 6.5 Hz, 2 H, 2 × CHOH), 3.36 (br s, 2 H, exch. D2O, 2 × OH), 3.16 (app t, J = 2.5 Hz, 4 H, 2 × CH 2NH), 1.19 (d, J = 6.5 Hz, 6 H, 2 × CH3). ¹³C NMR (100.6 MHz, DMSO-d 6): δ = 174.8 (2 × C=O), 67.2 (2 × CHOH), 38.2 (2 × CH2NH), 21.0 (2 × CH3). HRMS (EI, MeOH): m/z calcd for C8H16N2O4 [M + Na]+: 227.1008; found: 227.1010.

18

Synthesis of β-Amino Alcohols 9a-n - General Procedure
The lactamide 8 (23.7 mmol, 1 equiv) was dissolved in dry 1,2-dimethoxyethane (15 mL/g) in an oven-dried flask equipped with a Dean-Stark trap and reflux condenser under a nitrogen atmosphere. Boron trifluoride etherate (47.5 mmol, 2 equiv) was added, and then borane-methyl sulfide (47.5 mmol, 2 equiv) was added dropwise via syringe. Once the evolution of H2 had ceased, the solution was heated under reflux for 24 h (ca. 2-3 mL of distillate collected) and the solvents were removed in vacuo. The resulting colorless oil was carefully diluted with 6 M HCl (15 mL/g) and boiled for ca. 5 min. The resulting clear solution was neutralized while still hot with 6 M NaOH (15 mL/g) and then allowed to cool to r.t. before being saturated with solid K2CO3 and extracted with CHCl3 (3 × 50 mL). The combined organic extracts were dried over MgSO4 and evaporated to afford the crude β-amino alcohol 9 which was purified by vacuum distillation or recrystallization. In the case of bislactamides 8k and 8l, 4 equiv of both boron trifluoride etherate and borane-methyl sulfide were used. Compounds 9a-d,f-k are known.²¹ Characterization Data for 9e
Colorless liquid, bp 76 ˚C (1.33˙10 to 2.66˙10 bar). [α]D ¹6 +41.9 (c 4.95, CHCl3). IR (neat): 3307 (OH, NH), 2965, 2931, 1451, 1373, 1141, 1103, 1066, 1015, 917, 816 cm. ¹H NMR (400.1 MHz, CDCl3): δ = 3.79 (dqd, J = 10.0, 6.5, 3.0 Hz, 1 H, CHOH), 2.83 (dd, J = 12.0, 3.0 Hz, 1 H, CH 2NH), 2.50 (dd, J = 12.0, 10.0 Hz, 1 H, CH 2NH), 2.28 (br s, 2 H, exch. D2O, OH and NH), 2.13-2.18 (m, 1 H, CH), 1.16 (d, J = 6.5 Hz, 3 H, CH3), 0.41-0.51 (m, 2 H, CH2), 0.29-0.40 (m, 2 H, CH2). ¹³C NMR (100.6 MHz, CDCl3): δ = 65.0 (CHOH), 56.4 (CH2NH), 29.8 (CH), 19.9 (CH3), 6.5 (CH2), 5.4 (CH2). Anal. Calcd for C6H13NO: C, 62.61; H, 11.30; N, 12.17. Found: C, 62.39; H, 11.58; N, 11.95.
Characterization Data for 9l
White solid, mp 83-84 ˚C (CHCl3). [α]D ¹7 +34.2 (c 3.99, CHCl3). IR (Nujol): 3273 (OH), 3181 (NH), 2914, 1456, 1366, 1135, 1084, 985, 935, 900, 846 cm. ¹H NMR (400.1 MHz, CDCl3): δ = 3.80 (dqd, J = 9.5, 6.0, 3.0 Hz, 2 H, 2 × CHOH), 2.93 (br s, 4 H, exch. D2O, 2 × NH and 2 × OH), 2.70 (dd, J = 12.0, 3.0 Hz, 2 H, CH 2CHOH), 2.53-2.70 (m, 4 H, 2 × CH 2NH), 2.42 (dd, J = 12.0, 9.5 Hz, 2 H, CH 2CHOH), 1.46-1.57 (m, 4 H, 2 × CH 2CH2NH), 1.31-1.39 (m, 4 H, 2 × CH 2CH2CH2NH), 1.16 (d, J = 6.0 Hz, 6 H, 2 × CH3). ¹³C NMR (100.6 MHz, CDCl3): δ = 65.3 (2 × CHOH), 56.8 (2 × CH2NH), 49.4 (2 × CH2CHOH), 29.8 (2 × CH2CH2NH), 27.0 (2 × CH2CH2CH2NH), 20.7 (2 × CH3). HRMS (EI, MeOH): m/z calcd for C12H28N2O2 [M + H]+: 233.2229; found: 233.2234.
Characterization Data for 9m
Colorless liquid, bp 62 ˚C (1.33˙10-4 bar). [α]D ¹6 +34.2 (c 3.61, CHCl3). IR (neat): 3304 (OH, NH), 2942, 2818, 1460, 1370, 1277, 1129, 1055, 846, 778 cm. ¹H NMR (400.1 MHz, CDCl3): δ = 3.78 (dqd, J = 9.5, 6.0, 3.0 Hz, 1 H, CHOH), 2.65-2.78 (m, 3 H, CH 2CHOH and CH 2NH), 2.42 (dd, J = 12.0, 9.5 Hz, 1 H, CH 2CHOH), 2.37-2.46 [m, 2 H, CH 2N(CH3)2], 2.23 [s, 6 H, N(CH3)2], 1.15 (d, J = 6.0 Hz, 3 H, CH3). ¹³C NMR (100.6 MHz, CDCl3): δ = 65.1 (CHOH), 58.7 [CH2N(CH3)2], 56.5 (CH2CHOH), 46.3 (CH2NH), 45.0 [N(CH3)2], 20.0 (CH3). HRMS (EI, MeOH): m/z calcd for C7H18N2O [M + H]+: 146.1181; found: 146.1187.
Characterization Data for 9n
Colorless liquid, bp 72-76 ˚C (1.33˙10-4 bar). [α]D ¹6 +37.2 (c 1.68, CHCl3). IR (neat): 3303 (OH, NH), 2941, 2816, 1461, 1372, 1265, 1127, 1061, 839 cm. ¹H NMR (400.1 MHz, CDCl3): δ = 3.79 (dqd, J = 9.5, 6.3, 3.0 Hz, 1 H, CHOH), 2.70 (dd, J = 12.1, 3.0 Hz, 1 H, CH 2CHOH), 2.61-2.75 (m, 2 H, CH 2NH), 2.41 (dd, J = 12.1, 9.5 Hz, 1 H, CH 2CHOH), 2.34 [t, J = 7.2 Hz, 2 H, CH 2N(CH3)2], 2.23 [s, 6 H, N(CH 3)2], 1.66 (q, J = 7.0 Hz, 2 H, CH2), 1.15 (d, J = 6.3 Hz, 3 H, CH3). ¹³C NMR (100.6 MHz, CDCl3): δ = 65.3 (CHOH), 57.7 [CH2N(CH3)2], 56.7 (CH2CHOH), 47.6 (CH2NH), 45.5 [N(CH3)2], 27.9 (CH2), 20.4 (CH3). HRMS (EI, MeOH): m/z calcd for C8H20N2O [M + H]+: 161.1654; found: 161.1646.