Synlett 2009(11): 1777-1780  
DOI: 10.1055/s-0029-1217380
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Asymmetric Synthesis of Functionalized 3,4-Dihydronaphthalenes via an Organocatalytic Domino Nitroalkane-Michael/Aldol Condensation Reaction

Dieter Enders*a, Chuan Wanga, Jan W. Batsb
a Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
Fax: +49(241)8092127; e-Mail: enders@rwth-aachen.de;
b Institute of Organic Chemistry and Chemical Biology, University Frankfurt, Marie-Curie-Str. 11, 60439 Frankfurt am Main, Germany
Further Information

Publication History

Received 26 March 2009
Publication Date:
15 June 2009 (online)

Abstract

An organocatalytic domino nitroalkane-Michael addition/aldol condensation reaction has been developed. This process provides an efficient asymmetric synthesis of trisubstituted 3,4-dihydronaphthalenes in moderate to good yields (40-75%) and high stereoselectivities (de >98%, ee = 91 to >99%).

    References and Notes

  • For recent reviews on organocatalysis, see:
  • 1a Berkessel A. Gröger H. Asymmetric Organocatalysis   Wiley-VCH; Weinheim: 2005. 
  • 1b Dalko PI. Enantioselective Organocatalysis   Wiley-VCH; Weinheim: 2007. 
  • 1c Special issue on organocatalysis: Chem. Rev.  2007,  107:  issue 12 
  • 1d Pellissier H. Tetrahedron  2007,  63:  9267 
  • 1e Dondoni A. Massi A. Angew. Chem. Int. Ed.  2008,  47:  4638 ; Angew. Chem. 2008, 120, 4716
  • 1f Kotsuki H. Ikishima H. Okuyama A. Heterocycles  2008,  75:  493 
  • 1g Kotsuki H. Ikishima H. Okuyama A. Heterocycles  2008,  75:  757 
  • 1h Enders D. Narine AA. J. Org. Chem.  2008,  73:  7857 
  • 1i Melchiorre P. Marigo M. Carlone A. Bartoli G. Angew. Chem. Int. Ed.  2008,  47:  6138 ; Angew. Chem. 2008, 120, 6232
  • For recent reviews on domino reactions, see:
  • 2a Tietze LF. Chem. Rev.  1996,  96:  115 
  • 2b Tietze LF. Brasche G. Gericke K. Domino Reactions in Organic Synthesis   Wiley-VCH; Weinheim: 2006. 
  • 2c Pellissier H. Tetrahedron  2006,  62:  1619 
  • 2d Pellissier H. Tetrahedron  2006,  62:  2143 
  • 2e Nicolaou KC. Edmonds DJ. Bulger PG. Angew. Chem. Int. Ed.  2006,  45:  7134 ; Angew. Chem. 2006, 118, 7292
  • 2f Chapman CJ. Frost CG. Synthesis  2007,  1 
  • For reviews on organocatalytic domino reactions, see:
  • 3a Enders D. Grondal C. Hüttl MRM. Angew. Chem. Int. Ed.  2007,  46:  1570 ; Angew. Chem. 2007, 119, 1590
  • 3b Yu X. Wang W. Org. Biomol. Chem.  2008,  6:  2037 
  • For selected examples of organocatalytic domino reactions, see:
  • 4a Yang JW. Fonseca MTH. List B. J. Am. Chem. Soc.  2005,  127:  15036 
  • 4b Huang Y. Walji AM. Larsen CH. MacMillan DWC. J. Am. Chem. Soc.  2005,  127:  15051 
  • 4c Enders D. Hüttl MRM. Grondal C. Raabe G. Nature  2006,  441:  861 
  • 4d Wang W. Li H. Wang J. Zu L. J. Am. Chem. Soc.  2006,  128:  10354 
  • 4e Enders D. Hüttl MRM. Runsink J. Raabe G. Wendt B. Angew. Chem. Int. Ed.  2007,  46:  467 ; Angew. Chem. 2007, 119, 471
  • 4f Enders D. Narine AA. Benninghaus TR. Raabe G. Synlett  2007,  1667 
  • 4g Carlone A. Cabrera S. Marigo M. Jørgensen KA. Angew. Chem. Int. Ed.  2007,  46:  1101 ; Angew. Chem. 2007, 119, 1119
  • 4h Hayashi Y. Okano T. Aratake S. Hazelard D. Angew. Chem. Int. Ed.  2007,  46:  4922 ; Angew. Chem. 2007, 119, 5010
  • 4i Vicario JL. Reboredo L. Badía D. Carrillo L. Angew. Chem. Int. Ed.  2007,  46:  5168 ; Angew. Chem. 2007, 119, 5260
  • 4j Rueping M. Sugiono E. Merino E. Angew. Chem. Int. Ed.  2008,  47:  3046 ; Angew. Chem. 2008, 120, 3089
  • 4k Enders D. Wang C. Bats JW. Angew. Chem. Int. Ed.  2008,  47:  7539 ; Angew. Chem. 2008, 120, 7649
  • 4l Zhao G.-L. Rios R. Vesley J. Eriksson L. Córdova A. Angew. Chem. Int. Ed.  2008,  47:  8468 ; Angew. Chem. 2008, 120, 8596
  • 4m Lu M. Zhu D. Lu Y. Hou Y. Tan B. Zhong G. Angew. Chem. Int. Ed.  2008,  47:  10187 ; Angew. Chem. 2008, 120, 10341
  • 4n Enders D. Hüttl MRM. Raabe G. Bats JW. Adv. Synth. Catal.  2008,  350:  267 
  • 4o Kotame P. Hong B.-C. Liao J.-H. Tetrahedron Lett.  2009,  50:  704 
  • 4p Franzén J. Fisher A. Angew. Chem. Int. Ed.  2009,  48:  787 ; Angew. Chem. 2009, 121, 801
  • For reviews on organocatalytic Michael additions, see:
  • 5a Tsogoeva SB. Eur. J. Org. Chem.  2007,  1701 
  • 5b Sulzer-Mossé S. Alexakis A. Chem. Commun.  2007,  3123 
  • 5c Vicario JL. Badía D. Carrillo L. Synthesis  2007,  2065 
  • 5d Almaºi D. Alonso DA. Nájera C. Tetrahedron: Asymmetry  2007,  18:  299 
  • For selected examples of organocatalytic nitroalkane-Michael additions with enals or enones as electrophile, see:
  • 6a Hanessian S. Pham V. Org. Lett.  2000,  2:  2975 
  • 6b Corey EJ. Zhang F.-Y. Org. Lett.  2000,  2:  4257 
  • 6c Halland N. Hazell RG. Jørgensen KA. J. Org. Chem.  2002,  67:  8331 
  • 6d Tsogoeva SB. Jagtap SB. Ardemasova ZA. Kalikhevich VN. Eur. J. Org. Chem.  2004,  4014 
  • 6e Vukalya B. Varga S. Csámpai A. Soós T. Org. Lett.  2005,  7:  1967 
  • 6f Mitchell CET. Brenner SE. Ley SV. Chem. Commun.  2005,  5346 
  • 6g Prieto A. Halland N. Jørgensen KA. Org. Lett.  2005,  7:  3897 
  • 6h Ooi T. Takada S. Fujioka S. Maruoka K. Org. Lett.  2005,  7:  5143 
  • 6i Mitchell CET. Brenner SE. García-Fortanet J. Ley SV. Org. Biomol. Chem.  2006,  4:  2039 
  • 6j Hanessian S. Shao Z. Warrier JS. Org. Lett.  2006,  8:  4787 
  • 6k Tsogoeva SB. Jagtap SB. Ardemasova ZA. Tetrahedron: Asymmetry  2006,  17:  989 
  • 6l Gotoh H. Ishikawa H. Hayashi Y. Org. Lett.  2007,  9:  5307 
  • 6m Hojabri L. Hartikka L. Moghaddam FM. Arvidsson PI. Adv. Synth. Catal.  2007,  349:  740 
  • 6n Vakulya B. Varga S. Soós T. J. Org. Chem.  2008,  73:  3475 
  • 6o Li P. Wang Y. Liang X. Ye J. Chem. Commun.  2008,  3302 
  • 6p Zhong S. Chen Y. Petersen JL. Akhmedov NG. Shi X. Angew. Chem. Int. Ed.  2009,  48:  1279 ; Angew. Chem. 2009, 121, 1305
  • For selected examples of organocatalytic domino reactions involving nitroalkane-Michael additions with enals or enones as electrophiles, see refs 4c, 4e, 4g, 4n, 4o, and:
  • 7a Reyes E. Jiang H. Milelli A. Elsner P. Hazell RG. Jørgensen KA. Angew. Chem. Int. Ed.  2007,  46:  9202 ; Angew. Chem. 2007, 119, 9362
  • 7b Zhao G.-L. Ibrahem I. Dziedzic P. Sun J. Bonneau C. Córdova A. Chem. Eur. J.  2008,  14:  10007 
  • 7c Lv J. Zhang J. Lin Z. Wang Y. Chem. Eur. J.  2009,  15:  972 
  • 7d Zu L. Zhang S. Xie H. Wang W. Org. Lett.  2009,  11:  1627 
  • 8 For a review on organocatalytic aldol reactions, see: Guillena G. Nájera C. Ramón DJ. Tetrahedron: Asymmetry  2007,  18:  2249 
  • For selected examples of organocatalytic intramolecular aldol reactions, see:
  • 9a Pidathala C. Hoang L. Vignola N. List B. Angew. Chem. Int. Ed.  2003,  42:  2785 ; Angew. Chem. 2003, 115, 2891
  • 9b Kriis K. Kanger T. Laars M. Müürisepp A.-M. Pehk T. Lopp M. Synlett  2006,  1699 
  • 9c Enders D. Niemeier O. Straver L. Synlett  2006,  3399 
  • 9d Hayashi Y. Sekiziwa H. Yamaguchi J. Gotoh H. J. Org. Chem.  2007,  72:  6493 
  • 9e Yoshitomi Y. Makino K. Hamada Y. Org. Lett.  2007,  9:  2457 
  • For selected examples of organocatalytic domino reactions involving intramolecular aldol reactions, see refs 4c-g, 4n, 4o and:
  • 10a Halland N. Abruel PS. Jørgensen KA. Angew. Chem. Int. Ed.  2004,  43:  1272 ; Angew. Chem. 2004, 116, 1292
  • 10b Brandau B. Maerten E. Jørgensen KA.
    J. Am. Chem. Soc.  2006,  128:  14986 
  • 10c Govender T. Hojbri L. Moghaddam FM. Arvidsson PI. Tetrahedron: Asymmetry  2006,  17:  1763 
  • 10d Wang J. Li H. Xie H. Zu L. Shen X. Wang W. Angew. Chem. Int. Ed.  2007,  46:  9050 ; Angew. Chem. 2007, 119, 9208
  • 10e Li H. Wang J. Xie H. Zu L. Jiang W. Duesler EN. Wang W. Org. Lett.  2007,  9:  965 
  • 10f Hong B.-C. Nimje RY. Sadani AA. Liao J.-H. Org. Lett.  2008,  10:  2345 
  • 10g Penon O. Carlone A. Mazzanti A. Locatelli M. Sambri L. Bartoli G. Melchiorre P. Chem. Eur. J.  2008,  14:  4788 
  • For reviews on diphenylprolinol TMS-ether, see:
  • 11a Palomo C. Mielgo A. Angew. Chem. Int. Ed.  2006,  45:  7876 ; Angew. Chem. 2006, 118, 8042
  • 11b Mielgo A. Palomo C. Chem. Asian J.  2008,  922 
12

Compound 3c: CCDC-725063 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallo-graphic Data Centre via www.ccdc.cam.ac.uk/data_request/cif

13

General Procedure: To a solution of 2-(nitromethyl)-benzaldehyde (1; 1.0 mmol) and α,β-unsatured aldehyde 2 (1.1 mmol, 1.1 equiv) in Et2O (2 mL), was added (S)-di-phenylprolinol TMS-ether [(S)-4; 0.05 mmol, 5 mol%]. The reaction mixture was stirred at the temperature and for the time displayed in Table  [²] .
Workup A: Direct purification of the reaction mixture by flash chromatography afforded 3,4-dihydronaphthalenes 3 (pentane-Et2O, 2-10:1).
Workup B: Direct suction through a funnel followed by washing with Et2O afforded 3c.
Workup C: The reaction mixture was suctioned through a funnel and washed with Et2O. Purification of the obtained solid by flash chromatography (silica gel, pentane-Et2O, 1:3) afforded 3d.
(3 R ,4 S )-3-(2-Methoxyphenyl)-4-nitro-3,4-dihydro-naphthalene-2-carbaldehyde (3c; Figure 2): Isolated as a colorless solid (206 mg, 67%). The ee (>99%) was determined by HPLC on a chiral stationary phase [Chiralcel OD; n-heptane-i-PrOH (8:2); 1.0 mL/min, t R  = 9.04 min(major), 10.29 min (minor, based on the racemic mixture)]; mp 182 ˚C; [α]D ²0 -482 (c 1.0, CHCl3); IR (KBr): 3310 (w), 3000 (w), 2946 (w), 2823 (m), 2728 (w), 2324 (w), 2268 (w), 2184 (w), 2048 (w), 1989 (w), 1942 (w), 1735 (w), 1701 (w), 1663 (vs), 1627 (s), 1599 (m), 1570 (m), 1538 (vs), 1489 (s), 1460 (s), 1435 (m), 1399 (s), 1358 (s), 1327 (m), 1289 (s), 1273 (s), 1245 (vs), 1192 (w), 1158 (vs), 1105 (s), 1052 (s), 1028 (s), 961 (w), 924 (s), 855 (m), 819 (m), 755 (vs), 704 (s) cm; ¹H NMR (400 MHz, CDCl3): δ = 3.95 (s, 3 H, OCH3), 5.48 (br s, J = <2 Hz, 1 H, H-3), 5.62 (br s, J = <2 Hz, 1 H, H-4), 6.60 (dd, J = 7.6, 1.6 Hz, 1 H, H-6′), 6.65 (td, J = 7.6, 0.8 Hz, 1 H, H-5′), 6.91 (d, J = 7.6 Hz, 1 H, H-3′), 7.19 (td, J = 7.6, 1.6 Hz, 1 H, H-4′), 7.36-7.42 (m, 2 H, H-5,7), 7.48-7.54 (m, 2 H, H-6,8), 7.68 (s, 1 H, H-1), 9.73 (s, 1 H, CHO); ¹³C NMR (101 MHz, CDCl3): δ = 34.5 (C-3), 55.6 (OCH3), 86.4 (C-4), 110.8 (C-3′), 120.3 (C-5′), 122.5 (C-1′), 126.9 (C-6′), 128.0 (C-9), 129.0 (C-4′), 129.4 (C-8), 130.9 (C-6), 131.3 (C-5), 131.6 (C-7), 131.7 (C-10), 137.8 (C-2), 144.1 (C-1), 156.7 (C-2′), 190.7 (CHO); MS (EI, 70 eV): m/z (%) = 309.4 (5.8) [M+], 277.3 (2.2), 263.3 (74), 245.3 (50), 235.4 (100), 231.4 (24), 202.3 (65), 189.3 (19), 176.3 (2.7), 165.3 (8.8), 155.3 (7.5), 152.3 (2.7), 127.3 (9.5), 117.6 (9.1), 101.3 (19), 94.8 (7.2), 83.1 (4.7), 77.4 (10), 57.4 (2.2), 51.4 (4.0), 43.3 (2.2); Anal. Calcd for C18H15NO4: C, 69.89; H, 4.89; N, 4.53. Found: C, 69.92; H, 4.94; N, 4.50.

Figure 2