Synlett 2009(11): 1812-1816  
DOI: 10.1055/s-0029-1217354
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Single-Step Symmetrical Double Alkylation of β,γ-Unsaturated δ-Lactams via Magnesium ‘Ate’ Complexes

Jacek G. Sośnicki*, Łukasz Struk
Institute of Chemistry and Environmental Protection, West Pomeranian University of Technology Szczecin, Al. Piastów 42, 71065 Szczecin, Poland
Fax: +48(91)4494639; e-Mail: sosnicki@ps.pl;
Further Information

Publication History

Received 26 February 2009
Publication Date:
12 June 2009 (online)

Abstract

An easy approach to symmetrically 3,3-dialkylated derivatives of 3,6-dihydro-1H-pyridin-2-one in a one-pot and a single-step procedure via magnesium ‘ate’ complex is described. [Bu3Mg]Li used as the base showed great basic potential as one equivalent of it allowed double proton abstraction from 3,6-dihydro-1H-pyridin-2-one. Deprotonation at noncryogenic conditions yielded stable magnesiates which on treatment with more than two equivalents of alkyl halides provided 3,3-dialkylated products in good yield. In some cases minor 3,5-dialkylated lactams were formed due to allylic conjugation.

    References and Notes

  • 1 Wittig G. Meyer FJ. Lange G. Justus Liebigs Ann. Chem.  1951,  571:  167 
  • 2a Stefan MC. Javier AE. Osaka I. McCullough RD. Macromolecules  2009,  42:  30 
  • 2b Shinozuka T. Yamamoto Y. Hasegawa T. Saito K. Naito S. Tetrahedron Lett.  2008,  49:  1619 
  • 2c Gallou F. Haenggi R. Hirt H. Marterer W. Schaefer F. Seeger-Weibel M. Tetrahedron Lett.  2008,  49:  5024 
  • 2d Lau SYW. Hughes G. O’Shea PD. Davies IW. Org. Lett.  2007,  9:  2239 
  • 2e Fleming FF. Gudipati S. Anh Viet V. Mycka RJ. Knochel P. Org. Lett.  2007,  9:  4507 
  • 2f Dolman SJ. Gosselin F. O’Shea PD. Davies IW. Tetrahedron  2006,  62:  5092 
  • 2g Kii S. Akao A. Iida T. Mase T. Yasuda N. Tetrahedron Lett.  2006,  47:  1877 
  • 2h Buron F. Plé N. Turck A. Marsais F. Synlett  2006,  1586 
  • 2i Thomas GL. Böhner C. Ladlow M. Spring DR. Tetrahedron  2005,  61:  12153 
  • 2j Trost BM. Frederiksen MU. Papillon JP. Harrington PE. Shin S. Shireman BT. J. Am. Chem. Soc.  2005,  127:  3666 
  • 2k Xu J. Jain N. Sui Z. Tetrahedron Lett.  2004,  45:  6399 
  • 2l Therkelsen FD. Rottländer M. Thorup N. Pedersen EB. Org. Lett.  2004,  6:  1991 
  • 2m Tsuji T. Nakamura T. Yorimitsu H. Shinokubo H. Oshima K. Tetrahedron  2004,  60:  973 
  • 2n Ito S. Kubo T. Morita N. Matsui Y. Watanabe T. Ohta A. Fujimori K. Murafuji T. Sugihara Y. Tajiri A. Tetrahedron Lett.  2004,  45:  2891 
  • 2o Shinokubo H. Oshima K. Eur. J. Org. Chem.  2004,  2081 
  • 2p Dumouchel S. Mongin F. Trécourt F. Quéguiner G. Tetrahedron  2003,  59:  8629 
  • 2q Fukuhara K. Takayama Y. Sato F. J. Am. Chem. Soc.  2003,  125:  6884 
  • 2r Dumouchel S. Mongin F. Trécourt F. Quéguiner G. Tetrahedron Lett.  2003,  44:  3877 
  • 2s Dumouchel S. Mongin F. Trécourt F. Quéguiner G. Tetrahedron Lett.  2003,  44:  2033 
  • 2t Inoue A. Kondo J. Shinokubo H. Oshima K. Chem. Eur. J.  2002,  8:  1730 
  • 2u Mase T. Houpis IN. Akao A. Dorziotis I. Emerson K. Hoang T. Iida T. Itoh T. Kamei K. Kato S. Kato Y. Kawasaki M. Lang F. Lee J. Lynch J. Maligres P. Molina A. Nemoto T. Okada S. Reamer R. Song JZ. Tschaen D. Wada T. Zewge D. Volante RP. Reider PJ. Tomimoto K. J. Org. Chem.  2001,  66:  6775 
  • 2v Kondo J. Inoue A. Shinokubo H. Oshima K. Angew. Chem. Int. Ed.  2001,  40:  2085 
  • 2w Inoue A. Kitagawa K. Shinokubo H. Oshima K. J. Org. Chem.  2001,  66:  4333 
  • 2x Iida T. Wada T. Tomimoto K. Mase T. Tetrahedron Lett.  2001,  42:  4841 
  • 2y Kitagawa K. Inoue A. Shinokubo H. Oshima K. Angew. Chem. Int. Ed.  2000,  39:  2481 
  • 3a Hatano M. Miyamoto T. Ishihara K. Curr. Org. Chem.  2007,  11:  127 
  • 3b Faraks J. Richey HG. Organometallics  1990,  9:  1778 
  • 3c Hatano M. Matsumura T. Ishihara K. Org. Lett.  2005,  7:  573 
  • 3d Richery HG. DeStephano J. Tetrahedron Lett.  1985,  26:  275 
  • 3e Ashby EC. Chao L.-C. Laemmle J.
    J. Org. Chem.  1974,  39:  3258 
  • 4 Mulvey RE. Mongin F. Uchiyama M. Kondo Y. Angew. Chem. Int. Ed.  2007,  46:  3802 
  • 5a Bentabed-Ababsa G. Blanco F. Derdour A. Mongin F. Trécourt F. Quéguiner G. Ballesterous R. Abarca B. J. Org. Chem.  2009,  74:  163 
  • 5b Hawad H. Bayh O. Hoarau C. Trécourt F. Quéguiner G. Marsais F. Tetrahedron  2008,  64:  3236 
  • 5c Awad H. Mongin F. Trécourt F. Quéguiner G. Marsais F. Tetrahedron Lett.  2004,  45:  7873 
  • 5d Awad H. Mongin F. Trécourt F. Quéguiner G. Marsais F. Blanco F. Abarca B. Ballesteros R. Tetrahedron Lett.  2004,  45:  6697 
  • 6 Bayh O. Awad H. Mongin F. Hoarau C. Bischoff L. Trécourt F. Quéguiner G. Marsais F. Blanco F. Abarca B. Ballesteros R. J. Org. Chem.  2005,  70:  5190 
  • 7 Mongin F. Bucher A. Bazureau JP. Bayh O. Awad H. Trécourt F. Tetrahedron Lett.  2005,  46:  7989 
  • 8 Awad H. Mongin F. Trécourt F. Quéguiner G. Marsais F. Blanco F. Abarca B. Ballesteros R. Tetrahedron  2005,  61:  4779 
  • 9a Ide M. Nakata M. Bull. Chem. Soc. Jpn.  1999,  72:  2491 
  • 9b Ide M. Yasuda M. Nakata M. Synlett  1998,  936 
  • 9c Yasuda M. Ide M. Matsumoto Y. Nakata M. Bull. Chem. Soc. Jpn.  1998,  71:  1417 
  • 10a Sośnicki JG. Synlett  2003,  1673 
  • 10b Sośnicki JG. Westerlich S. Tetrahedron Lett.  2002,  43:  1325 
  • 11a Sośnicki JG. Tetrahedron  2009,  65:  1336 
  • 11b Sośnicki JG. Tetrahedron Lett.  2009,  50:  178 
  • 11c Sośnicki JG. Tetrahedron  2007,  63:  11862 
  • 12 Sośnicki JG. Tetrahedron Lett.  2005,  46:  4295 
  • 13 Sośnicki JG. Tetrahedron Lett.  2006,  47:  6809 
  • 14 Fuji K. Chem. Rev.  1993,  115:  2037 
  • 15a Pelcman B, Krog-Jensen C, Shen Y, Yee JGK, Mackenzie LF, Zhou Y, Han K, and Raymond JR. inventors; WO 2008110793  A1.  ; Chem. Abstr. 2008, 149, 378551
  • 15b Hill MW. Reddy PA. Covey DF. Rothman SM. J. Pharmacol. Exp. Ther.  1998,  285:  1303 
  • 15c Reddy PA. Woodward KE. Mclheren SM. Hsiang BCH. Latifi TN. Hill MW. Rothman SM. Ferrendelli JA. Covey DF. J. Med. Chem.  1997,  40:  44 
  • 16a Kocharit C. Chaiyanurakkul A. Gallagher T. Synlett  2006,  3069 
  • 16b Hanessian S. Tremblay M. Marzi M. Del Ville JR. J. Org. Chem.  2005,  70:  5070 
  • 16c Barberis M. Garcia-Losada P. Pleite S. Rodriguez JR. Soriano JF. Mendiola J. Tetrahedron Lett.  2005,  46:  4847 
  • See, for example:
  • 17a Amat M. Lozano O. Escolano C. Molins E. Bosch J. J. Org. Chem.  2007,  72:  4431 
  • 17b Groaning MD. Meyers AI. Tetrahedron  2000,  56:  9843 
  • 17c Meyers AI. Seefeld MA. Lefker BA. Blake JF. Williard PG. J. Am. Chem. Soc.  1998,  120:  7429 
  • 17d Meyers AI. Seefeld MA. Lefker BA. Blake JF. J. Am. Chem. Soc.  1997,  119:  4565 
  • 17e Meyers AI. Lefker BA. Wanner KT. Aitken RA. J. Org. Chem.  1986,  51:  1936 
  • 18a Brimble MA. Trzoss M. Tetrahedron  2004,  60:  5613 
  • 18b Colombo L. Di Giacomo M. Vinci V. Colombo M. Manzoni L. Scolastico C. Tetrahedron  2003,  59:  4501 
  • 18c Ezquerra J. Pedregal C. Rubio A. Vaquero JJ. Matia MP. Martin J. Diaz A. Navio JLG. Deeter JB. J. Org. Chem.  1994,  59:  4327 
  • 19 Anderson TF. Knight JG. Tchabanenko K. Tetrahedron Lett.  2003,  44:  757 
  • 20 Niida A. Mizumoto M. Narumi T. Inokuchi E. Oishi S. Ohno H. Otaka A. Kitaura K. Fujii N. J. Org. Chem.  2006,  71:  4118 
  • 22 Due to a well documented enhancement effect of LiCl on the reactivity of Grignard reagents it is possible that the presence of LiX (X = Cl, I) in the reaction environment influenced basicity of MgBu2, see: Rauhut CB. Vu AV. Fleming FF. Knochel P. Org. Lett.  2008,  10:  1187 ; and references cited therein, see also ref. 23a
  • 23a Kerr WJ. Watson AJB. Hayes D. Chem. Commun.  2007,  5049 ; and references cited therein
  • 23b Richey HG. King BA. J. Am. Chem. Soc.  1982,  104:  4672 
  • 25 Haasnoot CAG. DeLeeuw FAAM. Altona A. Tetrahedron  1980,  36:  2783 
21

Typical Procedure for the Dialkylation of 3 Using [Bu 3 Mg]Li (1a)
To a cooled (0 ˚C) and stirred solution of BuMgCl (2.1 mmol, 1.05 mL, 2.0 M in THF) in dry THF (2 mL) in a Schlenk flask, n-BuLi (4.2 mmol, 1.68 mL, 2.5 M in hexane) was added via syringe over 1 min under argon. A yellow suspension formed was stirred for 5 min and was next transferred via syringe to a cooled (0 ˚C) solution of 6-allyl-1-methyl-3,6-dihydro-1H-pyridin-2-ones (3a, 0.3 g, 2.0 mmol) in THF (10 mL). The resulting yellow solution was stirred for 30 min at 0 ˚C, and then benzyl bromide (0.75 g, 4.4 mmol) was added and stirred for 30 min. After addition of aq sat. NH4Cl (5 mL), the aqueous layer was extracted with EtOAc (2 × 50 mL) and the combined organic layers were dried over MgSO4. Filtration, concentration in vacuo, and purification by flash column chromatography (silica gel, n-hexane-EtOAc = 8:2, next 7:3) yielded 9a.

24

Selected Spectroscopic Data
6-Allyl-3,3-dibenzyl-1-methyl-3,6-dihydro-1 H -pyridin-2-one (9a)
Colorless solid (0.62 g, 94%), mp 61-63 ˚C (from n-hexane). IR (KBr pellet): ν = 3028 (w), 2912 (w), 1628 (s), 1496 (w), 1456 (w), 1398 (w), 1348 (w), 1230 (w), 916 (w), 756 (m), 744 (m), 702 (m), 696 (m) cm. ¹H NMR (400.1 MHz, CDCl3): δ = 1.03 (1 H, dt, J = 14.0, 8.3 Hz, 6-CHH), 1.86 (1 H, dm, J = 14.0 Hz, 6-CHH), 2.65 (2 H, d, J = 12.6 Hz, 2 × 3-CHH), 2.69 (3 H, s, NCH3), 3.14-3.20 (1 H, m, CH-6), 3.44 (1 H, d, J = 12.6 Hz, 3-CHH), 3.47 (1 H, d, J = 12.6 Hz, 3-CHH), 4.70-4.80 (2 H, m, =CH2), 4.92-5.05 (1 H, m, =CH), 5.42 (1 H, dd, J = 10.3, 3.2 Hz, =CH-5), 5.54 (1 H, dd, J = 10.3, 1.6 Hz, =CH-4), 7.08-7.27 (10 H, m, 2 × C6H5). ¹³C NMR (100.6 MHz, CDCl3): δ = 32.46 (NCH3), 38.20 (6-CH2), 45.93, 46.58 (2 × 3-CH2), 50.54 (C-3), 59.03 (CH-6), 117.86 (=CH2), 125.33 (=CH-5), 128.80 (=CH-4), 126.20, 126.35, 127.54, 127.79, 130.30, 130.66, 137.61, 137.82 (2 × C6H5), 132.61 (=CH), 170.80 (C-2). GC-MS (EI, 70eV): m/z = 331 (<1) [M+ ], 290 (100), 198 (28), 122 (37), 91 (63). Anal. Calcd for C23H25NO: C, 83.34; H, 7.60; N, 4.23. Found: C, 83.25; H, 7.69; N, 4.13.

26

PM3 calculations were performed using the HyperChem program (7.52 release).