Subscribe to RSS
DOI: 10.1055/s-0029-1216654
The Catalytic Asymmetric Intramolecular Stetter Reaction
Publication History
Publication Date:
22 April 2009 (online)
Abstract
This Account chronicles our efforts in the development of the catalytic asymmetric Stetter reaction using chiral triazolium salts as small molecule organic catalysts. Advances in the mechanistically related azolium-catalyzed asymmetric benzoin reaction are discussed, particularly as they apply to catalyst design. A chronological treatise of reaction discovery, catalyst optimization and reactivity extension follows.
1 Introduction
2 Proposed Mechanism of the Benzoin and Stetter Reactions
3 The Benzoin Reaction
4 Synthesis of Chiral Bicyclic Triazolium Salts
4.1 Aminoindanol-Derived Bicyclic Scaffold
4.2 Phenylalanine-Derived Bicyclic Scaffold
5 The Intermolecular Stetter Reaction
6 The Asymmetric Intramolecular Stetter Reaction
6.1 Recent Contributions to the Asymmetric Intramolecular Stetter Reaction
6.2 Comparison of the Asymmetric Intramolecular Stetter Reaction with Two Different Triazolium Carbene Scaffolds
6.3 Scope of the Intramolecular Stetter Reaction with Different Tethers
6.4 Electronic Effects of the Aromatic Backbone of the Aldehyde on the Intramolecular Stetter Reaction
6.5 Effects of the Michael Acceptor on the Asymmetric Intra-molecular Stetter Reaction
6.6 The Asymmetric Intramolecular Stetter Reaction of Aliphatic Aldehydes
7 Effects of Pre-existing Stereocenters on the Intramolecular Stetter Reaction
8 Synthesis of Quaternary Stereocenters via the Asymmetric Intramolecular Stetter Reaction
9 Synthesis of Contiguous Stereocenters via the Asymmetric Intramolecular Stetter Reaction
10 Asymmetric Synthesis of Hydrobenzofuranones via the Intramolecular Stetter Reaction
11 Applications to Total Synthesis
12 Summary and Outlook
Key words
asymmetric synthesis - triazolium salts - quaternary stereocenters - carbene catalysis - nucleophilic catalysis - organocata-lysis - Stetter reaction - benzoin reaction
- For reviews, see:
-
1a
Regitz M. Angew. Chem., Int. Ed. Engl. 1996, 35: 725 -
1b
Bourissou D.Guerret O.Gabbai FP.Bertrand G. Chem. Rev. 2000, 100: 39 -
1c
Herrmann WA. Angew. Chem. Int. Ed. 2002, 41: 1291 - For reviews, see:
-
2a
Enders D.Balensiefer T. Acc. Chem. Res. 2004, 37: 534 -
2b
Johnson JS. Angew. Chem. Int. Ed. 2004, 43: 1326 -
2c
Pohl M.Lingen B.Müller M. Chem. Eur. J. 2002, 8: 5288 -
2d
Nair V.Bindu S.Sreekumar V. Angew. Chem. Int. Ed. 2004, 43: 5130 -
2e
Zeitler K. Angew. Chem. Int. Ed. 2005, 44: 7506 -
2f
Christmann M. Angew. Chem. Int. Ed. 2005, 44: 2632 -
2g
Webber P.Krische MJ. Chemtracts 2007, 19: 262 - 3
Seebach D. Angew. Chem., Int. Ed. Engl. 1979, 18: 239 - For reviews, see:
-
4a
Albright JD. Tetrahedron 1983, 39: 3207 -
4b
Aitken RA.Thomas AW. Adv. Heterocycl. Chem. 2001, 79: 89 - For examples of the benzoin reaction that are not referenced later in the text, see:
-
5a
Hachisu Y.Bode JW.Suzuki K. J. Am. Chem. Soc. 2003, 125: 8432 -
5b For examples of the benzoin
reaction with acylsilanes, see:
Enders D.Niemeier O.Balensiefer T. Angew. Chem. Int. Ed. 2006, 45: 1463 -
5c
Linghu X.Johnson JS. Angew. Chem. Int. Ed. 2003, 42: 2534 -
5d
Linghu X.Potnick JR.Johnson JS. J. Am. Chem. Soc. 2004, 126: 3070 - 6
Stetter H.Kuhlmann H. In Organic Reactions Vol. 40:Paquette LA. Wiley & Sons; New York: 1991. p.407 -
7a
Tomioka K.Koga K. Noncatalytic Additions to α,β-Unsaturated Carbonyl Compounds, In Asymmetric Synthesis Vol. 2:Morrison JD. Academic Press; New York: 1983. p.201 -
7b
Yoshikoshi A.Miyashita M. Acc. Chem. Res. 1985, 18: 284 -
7c
Rosini G.Ballini R. Synthesis 1988, 833 - 8
Lapworth A. J. Chem. Soc. 1903, 83: 995 - For the mechanism of the thiamine-catalyzed benzoin reaction, see:
-
9a
Breslow R. J. Am. Chem. Soc. 1958, 80: 3719 -
9b
Breslow R.Kim R. Tetrahedron Lett. 1994, 35: 699 -
9c
White M.Leeper F. J. Org. Chem. 2001, 66: 5124 - 10
Wöhler F.Liebig J. Ann. Pharm. (Lemgo, Ger.) 1832, 3: 249 - 11
Ugai T.Dokawa T.Tsubokawa S. J. Pharm. Soc. Jpn. 1943, 63: 296 - 12
Pohl M.Lingen B.Müller M. Chem. Eur. J. 2002, 8: 5289 - 13
Sheehan JC.Hunnemann DH. J. Am. Chem. Soc. 1966, 88: 3666 - 14
Sheehan JC.Hara T. J. Org. Chem. 1974, 39: 1196 -
15a
Tagaki W.Tamura Y.Yano Y. Bull. Chem. Soc. Jpn. 1980, 53: 478 -
15b
Martí J.Castells J.López-Calahorra F. Tetrahedron Lett. 1993, 34: 521 -
15c
Yamashita K.Sasaki S.-i.Osaki T.Nango M.Tsuda K. Tetrahedron Lett. 1995, 36: 4817 - 16
Igau A.Grutzmacher H.Baceiredo A.Trinquier G.Betrand G. Angew. Chem., Int. Ed. Engl. 1989, 28: 621 - 17
Arduengo AJ.Harlow RL.Kline M. J. Am. Chem. Soc. 1991, 113: 361 - 18
Enders D.Breuer K.Teles JH. Helv. Chim. Acta 1996, 79: 1217 -
19a
Knight RL.Leeper FJ. Tetrahedron Lett. 1997, 38: 3611 -
19b
Gerhard AU.Leeper FJ. Tetrahedron Lett. 1997, 38: 3615 - 20
Dvorak CA.Rawal VH. Tetrahedron Lett. 1998, 39: 2925 - 21
Knight RL.Leeper FJ. J. Chem. Soc., Perkin Trans. 1 1998, 1891 - 22
Enders D.Kallfass U. Angew. Chem. Int. Ed. 2002, 41: 1743 - 23
Dünkelmann P.Kolter-Jung D.Nitsche A.Demir AS.Siegert P.Lingen B.Baumann M.Pohl M.Müller M. J. Am. Chem. Soc. 2002, 124: 12084 -
24a
Enders D.Niemeier O.Balensiefer T. Angew. Chem. Int. Ed. 2006, 45: 1463 -
24b
Enders D.Niemeier O.Raabe G. Synlett 2006, 2431 - 25
Takikawa H.Hachisu Y.Bode JW.Suzuki K. Angew. Chem. Int. Ed. 2006, 45: 3492 - 26
Mennen SM.Miller SJ. J. Org. Chem. 2007, 72: 5260 - 27
Linghu X.Potnick JR.Johnson JS. J. Am. Chem. Soc. 2004, 126: 3070 - 28
Kerr MS.Read de Alaniz J.Rovis T. J. Org. Chem. 2005, 70: 5725 - 29
Rovis T. Chem. Lett. 2008, 37: 2 - 30
Ghosh AK.Fidanze S.Senanayake CH. Synthesis 1998, 937 - 31
Norman BH.Kroin JS. J. Org. Chem. 1996, 61: 4990 -
32a
Meyers AI.Tavares FX. J. Org. Chem. 1996, 61: 8207 -
(b)
Smrcina M.Majer P.Majerová E.Guerassina TA.Eissenstat MA. Tetrahedron 1997, 53: 12867 -
33a
Enders D.Breuer K. Addition of Acyl Carbanion Equivalents to Carbonyl Groups and Enones, In Comprehensive Asymmetric Catalysis I-III Vol. 3:Jacobsen EN.Pfaltz A.Yamamoto H. Springer-Verlag; Berlin: 1999. p.1093 -
33b
Enders D.Balensiefer T. Acc. Chem. Res. 2004, 37: 534 - 34
Nahm MR.Potnick JR.White PS.Johnson JS. J. Am. Chem. Soc. 2006, 128: 2751 ; and references cited therein - For related examples of acylsilanes in the Stetter reaction, see:
-
35a
Mattson AE.Bharadwaj AR.Scheidt KA. J. Am. Chem. Soc. 2004, 126: 2314 -
35b
Bharadwaj AR.Scheidt KA. Org. Lett. 2004, 6: 2465 - 36
Mattson AE.Zuhl AM.Reynolds TE.Scheidt KA. J. Am. Chem. Soc. 2006, 128: 4932 -
37a
Ciganek E. Synthesis 1995, 1311 -
37b For a seminal example
of an intramolecular Stetter reaction, see:
Trost BM.Shuey CD.DiNinno F.McElvain SS. J. Am. Chem. Soc. 1979, 101: 1284 - 38
Enders D.Breuer K.Runsink J.Teles JH. Helv. Chim. Acta 1996, 79: 1899 - 39
Pesch J.Harms K.Bach T. Eur. J. Org. Chem. 2004, 2025 - 40
Mennen SM.Blank JT.Tran-Dubé MB.Imbriglio JE.Miller SJ. Chem. Commun. 2005, 195 - 41
Matsumoto Y.Tomioka K. Tetrahedron Lett. 2006, 47: 5843 -
42a
Kerr MS.Read de Alaniz J.Rovis T. J. Am. Chem. Soc. 2002, 124: 10298 -
42b
Read de Alaniz J.Kerr MS.Moore JL.Rovis T. J. Org. Chem. 2008, 73: 2033 - 45
Kerr MS.Rovis T. Synlett 2003, 1934 -
46a
Minowa N.Hirayama M.Fukatsu S. Tetrahedron Lett. 1984, 25: 1147 -
46b
Ruiz M.Ojea V.Shapiro G.Weber HP.Pombo-Villar E. Tetrahedron Lett. 1994, 35: 4551 -
46c
Hayashi T.Senda T.Takaya Y.Ogasawara M. J. Am. Chem. Soc. 1999, 121: 11591 -
46d
Fernández M.Diaz A.Guillin JJ.Blanco O.Ruiz M.Ojea V. J. Org. Chem. 2006, 71: 6958 -
46e
Kondoh A.Yorimitsu H.Oshima K. J. Am. Chem. Soc. 2007, 129: 6996 -
46f
Nishida G.Noguchi K.Hirano M.Tanaka K. Angew. Chem. Int. Ed. 2008, 47: 3410 -
46g
Sulzer-Mossé S.Tissot M.Alexakis A. Org. Lett. 2007, 9: 3749 -
46h
Capuzzi M.Perdicchia D.Jørgensen KA. Chem. Eur. J. 2008, 14: 128 - 47
Cullen SC.Rovis T. Org. Lett. 2008, 10: 3141 - 48
Reynolds NT.Rovis T. Tetrahedron 2005, 61: 6368 -
49a
Corey EJ.Guzman-Perez A. Angew. Chem. Int. Ed. 1998, 37: 389 -
49b
Christoffers J.Baro A. Angew. Chem. Int. Ed. 2003, 42: 1688 -
49c
Douglas CJ.Overman LE. Proc. Natl. Acad. Sci. U.S.A. 2004, 101: 5363 - 50
Kerr MS.Rovis T. J. Am. Chem. Soc. 2004, 126: 8876 - 51
Trost BM.Shuey CD.DiNinno F.McElvain SS. J. Am. Chem. Soc. 1979, 101: 1284 - 52
Moore JL.Kerr MS.Rovis T. Tetrahedron 2006, 62: 11477 - 53
Read de Alaniz J.Rovis T. J. Am. Chem. Soc. 2005, 127: 6284 - For examples of intramolecular proton transfer, see:
-
54a
Zimmerman HE. Acc. Chem. Res. 1987, 20: 263 -
54b
Zimmerman HE.Wang P. Org. Lett. 2002, 4: 2593 ; and references cited therein -
54c
Berrada S.Metzner P. Tetrahedron Lett. 1987, 28: 409 - It is also possible that the α-hydroxy-α-azolium anion adds to the Michael acceptor in concerted fashion, analogous to the reverse-Cope elimination mechanism seen with hydroxylamine additions; see:
-
55a
Niu D.Zhao K. J. Am. Chem. Soc. 1999, 121: 2456 -
55b
Sibi MP.Liu M. Org. Lett. 2000, 2: 3393 -
55c
Sibi MP.Prabagaran N.Ghorpade SG.Jasperse CP. J. Am. Chem. Soc. 2003, 125: 11796 - 56
Liu Q.Rovis T. J. Am. Chem. Soc. 2006, 128: 2552 - 57
Liu Q.Rovis T. Org. Process Res. Dev. 2007, 11: 598 -
58a
Stetter H.Kuhlmann H. Synthesis 1975, 379 -
58b Reference .
-
58c
Baumann KL.Butler DE.Deering CF.Mennen KE.Millar A.Nanninga TN.Palmer CW.Roth BD. Tetrahedron Lett. 1992, 33: 2283 -
58d
Galopin CC. Tetrahedron Lett. 2001, 42: 5589 -
58e
Harrington PE.Tius MA. J. Am. Chem. Soc. 2001, 123: 8509 -
58f
Anjaiah S.Chandrasekhar S.Gree R. Adv. Synth. Catal. 2004, 346: 1329 -
58g
Nicolaou KC.Tang YF.Wang JH. Chem. Commun. 2007, 1922 - 59
Orellana A.Rovis T. Chem. Commun. 2008, 730 - 60
Liu Q.Perreault S.Rovis T. J. Am. Chem. Soc. 2008, 130: 14066
References
Investigation of the enantioselectivity as a function of conversion revealed that 80 is formed in 80% ee at 10% conversion, with rapid erosion to 50% ee at 30% conversion.
44Similar observations have been noted by Miller and co-workers; see reference 40.