Z Orthop Unfall 2010; 148(1): 90-94
DOI: 10.1055/s-0029-1186112
Schulterchirurgie

© Georg Thieme Verlag KG Stuttgart · New York

Biochemische Analyse der Synovialflüssigkeit bei Patienten mit und ohne Rotatorenmanschettendefekt

Biochemical Analysis of the Synovial Fluid of the Shoulder Joint in Patients with and without Rotator Cuff TearsL. J. Lehmann1 , A. Schollmeyer1 , J. Stoeve2 , H.-P. Scharf1
  • 1Orthopädisch-Unfallchirurgisches Zentrum, Universitätsklinik Mannheim
  • 2Orthopädie und Unfallchirurgie, St. Marienkrankenhaus, Ludwigshafen
Further Information

Publication History

Publication Date:
19 October 2009 (online)

Zusammenfassung

Studienziel: Biochemische Veränderungen hinsichtlich der Zusammensetzung der Synovialflüssigkeit bei Patienten mit Defekten der Rotatorenmanschette (RM) sind weitestgehend unklar. Die Studienlage bezüglich eines Zusammenhangs mit dem Anstieg arthroseanzeigender Markermoleküle ist uneinheitlich. Ziel dieser Arbeit war die vergleichende Analyse der Konzentration von MMP 1, 3 und 13 bei Patienten mit und ohne RM-Defekt. Patienten und Methode: Im Rahmen der operativen Versorgung von Patienten mit Schultergelenkserkrankungen wurde arthroskopisch in 42 Fällen Synovialflüssigkeit gewonnen. In 21 Fällen lag eine komplette Ruptur der RM vor. Eine Gruppe mit 21 Patienten ohne komplette Ruptur der RM diente als Kontrollgruppe. Als Marker eines veränderten kartilaginären Stoffwechselprozesses wurden mithilfe eines ELISA-Tests die Matrix Metalloproteinasen MMP 1 (Kollagenase), MMP 3 (Stromelysin1) und MMP 13 (Kollagenase 3) bestimmt. Die statistische Analyse wurde mit SAS (SAS, release 8,02 Chicago, IL, USA) durchgeführt. Ergebnisse: Die Analyse der Synovialproben ergab eine signifikant höhere Konzentration von MMP 1 im Kollektiv ohne Ruptur (p = 0,0047). Für MMP 3 (2601,73 ng/ml zu 1775,67 ng/ml) und MMP 13 (2,69 ng/ml zu 2,35 ng/ml) gab es bei dieser Gegenüberstellung keinen statistisch signifikanten Unterschied, obgleich sich eine höhere Konzentration in der Gruppe der RM-Defekte darstellen ließ. Schlussfolgerung: Fallzahl und Standardabweichung zugrunde legend, kann sich in der Synovialflüssigkeit bislang kein einheitlicher signifikanter Unterschied in der Konzentration stoffwechselaktiver Enzyme feststellen lassen. Dennoch zeigen sich höhere Werte der eine katabole kartilaginäre Stoffwechsellage anzeigenden MMP-3- und -13-Aktivität. Dies könnte zu veränderten prognostischen und therapeutischen Anschauungen im Rahmen der Therapie der RM-Ruptur führen.

Abstract

Aim: The biochemical changes associated with rotator cuff tearing are still unclear. The aim of this study is to assess whether concentrations of matrix metalloproteinase in the synovial fluid are specifically altered in shoulders with torn rotator cuff tendons. Patients and Method: Synovial fluid was extracted via arthroscopy in 21 patients with complete rotator cuff tears (RCTs). The control group was composed of 21 patients without complete tears. The catabolic cartilage metabolism markers MMP-1 (collagenase), MMP-3 (stromelysin1) and MMP-13 (collagenase3) were quantified by an ELISA test and these results were then statistically analysed using SAS. Results: The mean concentration of the 21 samples with rotator cuff tears shows a higher concentration of MMP 3 (2601.73 ng/mL vs. 1775.67 ng/mL) and MMP 13 (2.69 ng/mL vs. 2.35 ng/mL) as well as a significantly higher concentration of MMP 1 (p = 0.0047) in the control group. Conclusions: A significant variation in the concentration of catabolic cartilage enzymes in the synovial fluid in patients with and without rotator cuff tears could not be found. Nonetheless, there is a bias for the MMP-3 and MMP-13 values, which makes a conductive influence in the aetiology of osteoarthritis probable.

Literatur

  • 1 Hamada K, Fukuda H, Mikasa M et al. Roentgenographic findings in massive rotator cuff tears. A long-term observation.  Clin Orthop Relat Res. 1990;  254 92-96
  • 2 Hsu H C, Luo Z P, Stone J J et al. Correlation between rotator cuff tear and glenohumeral degeneration.  Acta Orthop Scand. 2003;  74 89-94
  • 3 Feeney M S, O'Dowd J, Kay E W et al. Glenohumeral articular cartilage changes in rotator cuff disease.  J Shoulder Elbow Surg. 2003;  12 20-23
  • 4 Umans H R, Pavlov H, Berkowitz M et al. Correlation of radiographic and arthroscopic findings with rotator cuff tears and degenerative joint disease.  J Shoulder Elbow Surg. 2001;  10 428-433
  • 5 Harrisson L, McLaughlin H L. Rupture of the rotator cuff.  J Bone Joint Surg [Am]. 1962;  44 979-983
  • 6 Bokor D J, Hawkins R J, Huckell G H et al. Results of nonoperative management of full-thickness tears of the rotator cuff.  Clin Orthop Relat Res. 1993;  294 103-110
  • 7 Halverson P B, Cheung H S, McCarty D J et al. “Milwaukee shoulder” – association of microspheroids containing hydroxyapatite crystals, active collagenase, and neutral protease with rotator cuff defects. II. Synovial fluid studies.  Arthritis Rheum. 1981;  24 474-483
  • 8 Dieppe P A. Crystal deposition and inflammation.  Q J Med. 1984;  53 309-316
  • 9 Dieppe P A, Cawston T, Mercer E et al. Synovial fluid collagenase in patients with destructive arthritis of the shoulder joint.  Arthritis Rheum. 1988;  31 882-890
  • 10 Dieppe P A, Doherty M, Macfarlane D G et al. Apatite associated destructive arthritis.  Br J Rheumatol. 1984;  23 84-91
  • 11 Ratcliffe A, Flatow E L, Roth N et al. Biochemical markers in synovial fluid identify early osteoarthritis of the glenohumeral joint.  Clin Orthop Relat Res. 1996;  330 45-53
  • 12 Birkedal-Hansen H, Moore W G, Bodden M K et al. Matrix metalloproteinases: a review.  Crit Rev Oral Biol Med. 1993;  4 197-250
  • 13 Nagase H. Activation mechanisms of matrix metalloproteinases.  Biol Chem. 1997;  378 151-160
  • 14 Mitchell P G, Magna H A, Reeves L M et al. Cloning, expression, and type II collagenolytic activity of matrix metalloproteinase-13 from human osteoarthritic cartilage.  J Clin Invest. 1996;  97 761-768
  • 15 Aigner T, Kurz B, Fukui N et al. Roles of chondrocytes in the pathogenesis of osteoarthritis.  Curr Opin Rheumatol. 2002;  14 578-584
  • 16 Aigner T, McKenna L. Molecular pathology and pathobiology of osteoarthritic cartilage.  Cell Mol Life Sci. 2002;  59 5-18
  • 17 Cawston T, Billington C, Cleaver C et al. The regulation of MMPs and TIMPs in cartilage turnover.  Ann N Y Acad Sci. 1999;  878 120-129
  • 18 Yoshihara Y, Hamada K, Nakajima T et al. Biochemical markers in the synovial fluid of glenohumeral joints from patients with rotator cuff tear.  J Orthop Res. 2001;  19 573-579
  • 19 Ishiguro N, Ito T, Ito H et al. Relationship of matrix metalloproteinases and their inhibitors to cartilage proteoglycan and collagen turnover: analyses of synovial fluid from patients with osteoarthritis.  Arthritis Rheum. 1999;  42 129-136
  • 20 Iwase T, Hasegawa Y, Ishiguro N et al. Synovial fluid cartilage metabolism marker concentrations in osteonecrosis of the femoral head compared with osteoarthrosis of the hip.  J Rheumatol. 1998;  25 527-531
  • 21 Lohmander L S. Articular cartilage and osteoarthrosis. The role of molecular markers to monitor breakdown, repair and disease.  J Anat. 1994;  184 477-492
  • 22 Lohmander L S, Roos H, Dahlberg L et al. Temporal patterns of stromelysin-1, tissue inhibitor, and proteoglycan fragments in human knee joint fluid after injury to the cruciate ligament or meniscus.  J Orthop Res. 1994;  12 21-28
  • 23 Freemont A J, Hampson V, Tilman R et al. Gene expression of matrix metalloproteinases 1, 3, and 9 by chondrocytes in osteoarthritic human knee articular cartilage is zone and grade specific.  Ann Rheum Dis. 1997;  56 542-549
  • 24 Okada Y, Konomi H, Yada T et al. Degradation of type IX collagen by matrix metalloproteinase 3 (stromelysin) from human rheumatoid synovial cells.  FEBS Lett. 1989;  244 473-476
  • 25 Okada Y, Gonoji Y, Nakanishi I et al. Immunohistochemical demonstration of collagenase and tissue inhibitor of metalloproteinases (TIMP) in synovial lining cells of rheumatoid synovium.  Virchows Arch B Cell Pathol Incl Mol Pathol. 1990;  59 305-312
  • 26 Lark M W, Bayne E K, Flanagan J et al. Aggrecan degradation in human cartilage. Evidence for both matrix metalloproteinase and aggrecanase activity in normal, osteoarthritic, and rheumatoid joints.  J Clin Invest. 1997;  100 93-106
  • 27 Lo I K, Marchuk L L, Hollinshead R et al. Matrix metalloproteinase and tissue inhibitor of matrix metalloproteinase mRNA levels are specifically altered in torn rotator cuff tendons.  Am J Sports Med. 2004;  32 1223-1229
  • 28 Osawa T, Shinozaki T, Takagishi K. Multivariate analysis of biochemical markers in synovial fluid from the shoulder joint for diagnosis of rotator cuff tears.  Rheumatol Int. 2005;  25 436-441
  • 29 Lohmander L S, Roos H. Knee ligament injury, surgery and osteoarthrosis. Truth or consequences?.  Acta Orthop Scand. 1994;  65 605-609

Dr. Lars Johannes Lehmann

Orthopädisch-Unfallchirurgisches Zentrum
Universitätsklinik

Theodor Kutzer Ufer 1–3

68167 Mannheim

Phone: 06 21/83 45 47

Fax: 06 21/83 45 40

Email: dr.lehmann@mac.com

    >