Der Nuklearmediziner 2009; 32(2): 142-148
DOI: 10.1055/s-0028-1119366
Nicht-FDG-PET

© Georg Thieme Verlag KG Stuttgart · New York

11C-Methionin-PET in der Neuroonkologie

11C-Methionine PET in NeurooncologyG. Berding 1
  • 1Klinik für Nuklearmedizin, Medizinische Hochschule Hannover
Further Information

Publication History

Publication Date:
22 June 2009 (online)

Zusammenfassung

Die 11C-Methionin-PET kann in der Hirntumordiagnostik einzigartige Informationen liefern. Sie bietet im Vergleich zur 18F-FDG-PET aufgrund der niedrigen Aminosäureaufnahme im normalen Hirngewebe und in Entzündungszellen einen guten Kontrast für die Diagnostik niedriggradig maligner Tumoren und die Differenzierung gegenüber entzündlichen Veränderungen. Verglichen mit der MRT zeichnet sich die PET mit radioaktiv markierten Aminsäuren durch eine realistische Widerspiegelung des biologisch aktiven Tumoranteils aus. Dieser ist oftmals größer als die durch die Kontrastmittelanreicherung in der MRT gekennzeichnete Region der Blut-Hirn-Schranken-Störung, aber kleiner als das im T2-gewichteten Bild erkennbare Tumorödem. Damit kann die 11C-Methionin-PET einen wesentlichen Beitrag leisten bei der Planung chirurgischer oder strahlentherapeutischer Behandlungen. Bei der Verlaufskontrolle therapeutischer Ergebnisse ist insbesondere auch die quantitative Information hinsichtlich der regionalen Ausdehnung und Intensität der Steigerung der Aminosäureaufnahme hilfreich, um ggf. die Notwendigkeit und das Ausmaß einer Re-Intervention festzulegen. Für die klinische Forschung stellen Untersuchungen mit radioaktiv markierten Aminosäuren aufgrund ihres prognostischen Potenzials ein Tool zur Auswahl biologisch vergleichbarer Tumoren im Rahmen von prospektiven Studien dar. Aus Sicht des Patienten ist insbesondere die 11C-Methionin-PET ein einfaches, nicht-invasives Verfahren, welches zudem auch mit einer vergleichsweise geringen Strahlenexposition einhergeht.

Abstract

11C-Methionine PET provides unique information in the diagnosis of brain tumours. In comparison to 18F-FDG PET, due to low uptake in normal brain tissue and inflammatory cells, high contrast is obtained for the diagnosis of low-grade tumours and differentiation against inflammatory changes. When compared to MRT, one major advantage of PET with radioactive labelled amino acids is the realistic reflection of the biologically active part of the tumour. This part is often larger than the area of blood brain barrier disturbance as outlined by the enhancement of contrast media in MRT – and smaller than the tumour oedema as shown in the T2 weighted images. Hence, 11C-Methionine PET is able to contribute substantially in planning of surgical or radiation therapy. In the evaluation of treatment results, especially the quantitative information with regard to regional extension and intensity of elevated amino acid uptake can be crucial to establish the necessity and size for re-intervention as the case may be. For clinical research, radio-labelled amino acids can be used – due to their prognostic potential – as a tool to select biologically comparable tumours for a prospective study. From the patients perspective, 11C-Methionine PET is a simple, non-invasive procedure, with a relatively low radiation exposure.

Literatur

  • 1 Bergström M, Lundqvist H, Ericson K. et al . Comparison of the accumulation kinetics of L-[methyl-11C]-methionine and D-[methyl-11C]-methionine in brain tumors studied with positron emission tomography.  Acta Radiol. 1987;  28 225-229
  • 2 Braun V, Dempf S, Weller R. et al . Cranial neuronavigation with direct integration of 11C methionine positron emission tomography (PET) data - results of a pilot study in 32 surgical cases.  Acta Neurochir (Wien). 2002;  144 777-782
  • 3 Ceyssens S, Van Laere K, Groot T de. et al . [11C]methionine PET, histopathology, and survival in primary brain tumors and recurrence.  AJNR Am J Neuroradiol. 2006;  27 1432-1437
  • 4 Chung JK, Kim YK, Kim SK. et al . Usefulness of 11C-methionine PET in the evaluation of brain lesions that are hypo- or isometabolic on 18F-FDG PET.  Eur J Nucl Med Mol Imaging. 2002;  29 176-182
  • 5 Deloar HM, Fujiwara T, Nakamura T. et al . Estimation of internal absorbed dose of L-[methyl-11C]methionine using whole-body positron emission tomography Eur J Nucl Med.  1998;  25 629-633
  • 6 De Witte O, Goldberg I, Wikler D. et al . Positron emission tomography with injection of methionine as a prognostic factor in glioma.  J Neurosurg. 2001;  95 746-750
  • 7 Ericson K, Blomqvist G, Bergström M. et al . Application of a kinetic model on the methionine accumulation in intracranial tumours studied with positron emission tomography.  Acta Radiol. 1987;  28 505-509
  • 8 Grosu AL, Weber WA, Riedel E. et al . L-(methyl-11C) methionine positron emission tomography for target delineation in resected high-grade gliomas before radiotherapy.  Int J Radiat Oncol Biol Phys. 2005;  63 64-74
  • 9 Hamacher K, Coenen HH. Efficient routine production of the 18F-labelled amino acid O-2-18F-fluoroethyl-L-tyrosine.  Appl Radiat Isot. 2002;  57 853-856
  • 10 Herholz K, Herscovitch P, Heiss WD. NeuroPET – PET in neuroscience and clinical neurology. Springer, Berlin/Heidelberg/New York 2004
  • 11 Herholz K, Hölzer T, Bauer B. et al . 11C-methionine PET for differential diagnosis of low-grade gliomas.  Neurology. 1998;  50 1316-1322
  • 12 Herholz K, Kracht LW, Heiss WD. Monitoring the effect of chemotherapy in a mixed glioma by C-11-methionine PET.  J Neuroimaging. 2003;  13 269-271
  • 13 Jager PL, Vaalburg W, Pruim J. et al . Radiolabeled amino acids: basic aspects and clinical applications in oncology.  J Nucl Med. 2001;  42 432-445
  • 14 Kim S, Chung JK, Im SH. et al . 11C-methionine PET as a prognostic marker in patients with glioma: comparison with 18F-FDG PET.  Eur J Nucl Med Mol Imaging. 2005;  32 52-59
  • 15 Kracht LW, Friese M, Herholz K. et al . Methyl-[11C]- l-methionine uptake as measured by positron emission tomography correlates to microvessel density in patients with glioma.  Eur J Nucl Med Mol Imaging. 2003;  30 868-873
  • 16 Kracht LW, Miletic H, Busch S. et al . Delineation of brain tumor extent with [11C]L-methionine positron emission tomography: local comparison with stereotactic histopathology.  Clin Cancer Res. 2004;  10 7163-7170
  • 17 Langen KJ. Amino acid transport studies in brain tumors. In: Feinendegen LE et al. eds., Molecular nuclear medicine: the challenge of genomics and proteomics to clinical practice. Springer, Berlin/Heidelberg/New York 2003: 477-485
  • 18 Langleben DD, Segall GM. PET in differentiation of recurrent brain tumor from radiation injury.  J Nucl Med. 2000;  41 1861-1867
  • 19 Långström B, Antoni G, Gullberg P. et al . Synthesis of L- and D-[methyl-11C]methionine.  J Nucl Med. 1987;  28 1037-1040
  • 20 Levivier M, Massager N, Wikler D. et al . Use of stereotactic PET images in dosimetry planning of radiosurgery for brain tumors: clinical experience and proposed classification.  J Nucl Med. 2004;  45 1146-1154
  • 21 Miwa K, Shinoda J, Yano H. et al . Discrepancy between lesion distributions on methionine PET and MR images in patients with glioblastoma multiforme: insight from a PET and MR fusion image study.  J Neurol Neurosurg Psychiatry. 2004;  75 1457-1462
  • 22 Nariai T, Senda M, Ishii K. et al . Three-dimensional imaging of cortical structure, function and glioma for tumor resection.  J Nucl Med. 1997;  38 1563-1568
  • 23 Nariai T, Tanaka Y, Wakimoto H. et al . Usefulness of L-[methyl-11C] methionine-positron emission tomography as a biological monitoring tool in the treatment of glioma.  J Neurosurg. 2005;  103 498-507
  • 24 Nuutinen J, Sonninen P, Lehikoinen P. et al . Radiotherapy treatment planning and long-term follow-up with [11C]methionine PET in pa­tients with low-grade astrocytoma.  Int J Radiat Oncol Biol Phys. 2000;  48 43-52
  • 25 Padma MV, Said S, Jacobs M. et al . Prediction of pathology and survival by FDG PET in gliomas.  J Neurooncol. 2003;  64 227-237
  • 26 Pirotte B, Goldman S, Witte O De. et al . Integrated positron emission tomography and magnetic resonance imaging-guided resection of brain tumors: a report of 103 consecutive procedures.  J Neurosurg. 2006;  104 238-253
  • 27 Pirotte B, Goldman S, Massager N. et al . Comparison of 18F-FDG and 11C-methionine for PET-guided stereotactic brain biopsy of gliomas.  J Nucl Med. 2004;  45 1293-1298
  • 28 Pirotte B, Goldman S, Bogaert P Van. et al . Integration of [11C]methio­nine-positron emission tomographic and magnetic resonance imaging for image-guided surgical resection of infiltrative low-grade brain tumors in children.  Neurosurgery. 2005;  57 ((1 Suppl)) 128-139
  • 29 Ribom D, Schoenmaekers M, Engler H. et al . Evaluation of 11C-methionine PET as a surrogate endpoint after treatment of grade 2 gliomas.  J Neurooncol. 2005;  71 325-332
  • 30 Roelcke U, Radü EW, Ammon K von. et al . Alteration of blood-brain barrier in human brain tumors: comparison of [18F]fluorodeoxyglucose, [11C]methionine and rubidium-82 using PET.  J Neurol Sci. 1995;  132 20-27
  • 31 Singhal T, Narayanan TK, Jain V. et al . 11C-L-methionine positron emission tomography in the clinical management of cerebral gliomas.  Mol Imaging Biol. 2008;  10 1-18
  • 32 Smits A, Westerberg E, Ribom D. Adding 11C-methionine PET to the EORTC prognostic factors in grade 2 gliomas.  Eur J Nucl Med Mol Imaging. 2008;  35 65-71
  • 33 Tang BN, Sadeghi N, Branle F. et al . Semi-quantification of methionine uptake and flair signal for the evaluation of chemotherapy in low-grade oligodendroglioma.  J Neurooncol. 2005;  71 161-168
  • 34 Tovi M. MR imaging in cerebral gliomas analysis of tumour tissue components.  Acta Radiol Suppl.. 1993;  384 1-24
  • 35 Tsuyuguchi N, Takami T, Sunada I. et al . Methionine positron emission tomography for differentiation of recurrent brain tumor and radiation necrosis after stereotactic radiosurgery - in malignant glioma.  Ann Nucl Med. 2004;  18 291-296
  • 36 Vander Borght T, Asenbaum S, Bartenstein P. et al . EANM procedure guidelines for brain tumour imaging using labelled amino acid analogues.  Eur J Nucl Med Mol Imaging. 2006;  33 1374-1380
  • 37 Voges J, Herholz K, Hölzer T. et al . 11C-methionine and 18F-2-fluorodeoxyglucose positron emission tomography: a tool for diagnosis of cerebral glioma and monitoring after brachytherapy with 125I seeds.  Stereotact Funct Neurosurg. 1997;  69 ((1-4 Pt 2)) 129-135
  • 38 Watanabe M, Tanaka R, Takeda N. Magnetic resonance imaging and histopathology of cerebral gliomas.  Neuroradiology. 1992;  34 463-469

Korrespondenzadresse

Prof. Dr. G. Berding

Klinik für Nuklearmedizin

Medizinische Hochschule Hannover

Carl-Neuberg-Str. 1

30625 Hannover

Phone: +49/511/532/55 98

Fax: +49/511/532 85 88

Email: berding.georg@mh-hannover.de