Fortschr Neurol Psychiatr 2009; 77(2): 72-82
DOI: 10.1055/s-0028-1109116
Originalarbeit

© Georg Thieme Verlag KG Stuttgart · New York

Somatische Faktoren bei leichten kognitiven Störungen

Somatic Factors in Cognitive ImpairmentT. Etgen1, 2 , M. Brönner2 , D. Sander3, 4 , H. Bickel2 , K. Sander3, 4 , H. Förstl2
  • 1Neurologische Klinik, Klinikum Traunstein (Chefarzt: Dr. T. Freudenberger)
  • 2Klinik für Psychiatrie und Psychotherapie, Technische Universität München (Direktor: Prof. Dr. H. Förstl)
  • 3Neurologische Klinik, Medical Park Loipl, Bischofswiesen (Chefarzt: Prof. Dr. D. Sander)
  • 4Neurologische Klinik, Technische Universität München (Direktor: Prof. Dr. B. Hemmer)
Further Information

Publication History

Publication Date:
16 February 2009 (online)

Zusammenfassung

Leichte kognitive Störungen beschreiben eine häufige, über dem Durchschnitt der entsprechenden Alters- und Ausbildungsstufe liegende Einschränkung von Merkfähigkeit, Aufmerksamkeit oder Denkvermögen ohne wesentliche Störung im Alltagsleben. Der Begriff „mild cognitive impairment (MCI)“ wurde in den letzten Jahren unterschiedlich definiert und als fragliches Vorstadium demenzieller Erkrankungen diskutiert. Die Ätiologie leichter kognitiver Störungen ist heterogen und kann durch unterschiedliche somatische Erkrankungen begünstigt oder hervorgerufen werden. Zu den relevanten somatischen Faktoren gehören Bluthochdruck, Diabetes mellitus, Herzinsuffizienz, chronisch-obstruktive Lungenerkrankung und Asthma bronchiale. Eine mögliche Rolle bei der Entstehung von leichten kognitiven Störungen besitzen ferner Hypercholesterinämie, chronische Niereninsuffizienz, subklinische Hypothyreose, Testosteronmangel, minimale hepatische Enzephalopathie, HIV- und Hepatitis-C-Infektion. Daher muss bei leichten kognitiven Störungen nach somatischen Risikofaktoren gesucht werden, um diese optimal zu behandeln, da dies zu einer Leistungsverbesserung führen oder eine Progredienz verhindern kann.

Abstract

Mild cognitive impairment describes a cognitive decline greater than expected for an individual’s age and education level that does not interfere significantly with activities of daily life. In the recent years concepts of “mild cognitive impairment” with divergent definitions have been discussed as potential preclinical forms of dementia. The etiology of cognitive impairment is heterogeneous and it can be promoted or caused by numerous somatic factors. Relevant somatic factors include hypertension, diabetes mellitus, heart failure, chronic obstructive airways disease and bronchial asthma. Cognitive impairment may be facilitated by hypercholesterolemia, chronic renal failure, hypothyroidism, testosterone deficiency, minimal hepatic encephalopathy, HIV- and hepatitis C-infection. Knowledge and diagnosis of these somatic factors is essential in cognitive impairment, as diligent treatment may lead to improve cognitive performance and postpone the manifestation of dementia.

Literatur

  • 1 Gauthier S, Reisberg B, Zaudig M. et al . Mild cognitive impairment.  Lancet. 2006;  367 1262-1270
  • 2 Kurz A, Diehl J, Riemenschneider M. et al . Leichte kognitive Störung. Fragen zu Definition, Diagnose, Prognose und Therapie.  Nervenarzt. 2004;  75 6-15
  • 3 DeCarli C. Mild cognitive impairment: prevalence, prognosis, aetiology, and treatment.  Lancet Neurol. 2003;  2 15-21
  • 4 Winblad B, Palmer K, Kivipelto M. et al . Mild cognitive impairment – beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment.  J Intern Med. 2004;  256 240-246
  • 5 Luck T, Riedel-Heller S G, Kaduszkiewicz H. et al . Mild cognitive impairment in general practice: age-specific prevalence and correlate results from the German study on ageing, cognition and dementia in primary care patients (AgeCoDe).  Dement Geriatr Cogn Disord. 2007;  24 307-316
  • 6 Graham J E, Rockwood K, Beattie B L. et al . Prevalence and severity of cognitive impairment with and without dementia in an elderly population.  Lancet. 1997;  349 1793-1796
  • 7 Förstl H, Bickel H, Frölich L. et al . Leichte kognitive Beeinträchtigung mit Vorzeichen rascher Verschlechterung.  Dtsch Med Wochenschr. 2008;  133 431-436
  • 8 Price J L, Morris J C. Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s disease.  Ann Neurol. 1999;  45 358-368
  • 9 Riemenschneider M, Lautenschlager N, Wagenpfeil S. et al . Cerebrospinal fluid tau and beta-amyloid 42 proteins identify Alzheimer disease in subjects with mild cognitive impairment.  Arch Neurol. 2002;  59 1729-1734
  • 10 Morris J C, Storandt M, Miller J P. et al . Mild cognitive impairment represents early-stage Alzheimer disease.  Arch Neurol. 2001;  58 397-405
  • 11 Linn R T, Wolf P A, Bachman D L. et al . The ‘preclinical phase’ of probable Alzheimer’s disease. A 13-year prospective study of the Framingham cohort.  Arch Neurol. 1995;  52 485-490
  • 12 DeCarli C, Miller B L, Swan G E. et al . Cerebrovascular and brain morphologic correlates of mild cognitive impairment in the National Heart, Lung, and Blood Institute Twin Study.  Arch Neurol. 2001;  58 643-647
  • 13 Seux M L, Forette F. Effects of hypertension and its treatment on mental function.  Curr Hypertens Rep. 1999;  1 232-237
  • 14 Birkenhager W H, Forette F, Seux M L. et al . Blood pressure, cognitive functions, and prevention of dementias in older patients with hypertension.  Arch Intern Med. 2001;  161 152-156
  • 15 Elias M F, Wolf P A, D’Agostino R B. et al . Untreated blood pressure level is inversely related to cognitive functioning: the Framingham Study.  Am J Epidemiol. 1993;  138 353-364
  • 16 Launer L J, Masaki K, Petrovitch H. et al . The association between midlife blood pressure levels and late-life cognitive function. The Honolulu-Asia Aging Study.  J Am Med Assoc. 1995;  274 1846-1851
  • 17 Tzourio C, Dufouil C, Ducimetiere P. et al . Cognitive decline in individuals with high blood pressure: a longitudinal study in the elderly. EVA Study Group. Epidemiology of Vascular Aging.  Neurology. 1999;  53 1948-1952
  • 18 Prince M J, Bird A S, Blizard R A. et al . Is the cognitive function of older patients affected by antihypertensive treatment? Results from 54 months of the Medical Research Council’s trial of hypertension in older adults.  Brit Med J. 1996;  312 801-805
  • 19 Applegate W B, Pressel S, Wittes J. et al . Impact of the treatment of isolated systolic hypertension on behavioral variables. Results from the systolic hypertension in the elderly program.  Arch Intern Med. 1994;  154 2154-2160
  • 20 Lithell H, Hansson L, Skoog I. et al . The Study on Cognition and Prognosis in the Elderly (SCOPE): principal results of a randomized double-blind intervention trial.  J Hypertens. 2003;  21 875-886
  • 21 Forette F, Seux M L, Staessen J A. et al . Prevention of dementia in randomised double-blind placebo-controlled Systolic Hypertension in Europe (Syst-Eur) trial.  Lancet. 1998;  352 1347-1351
  • 22 Tzourio C, Anderson C, Chapman N. et al . Effects of blood pressure lowering with perindopril and indapamide therapy on dementia and cognitive decline in patients with cerebrovascular disease.  Arch Intern Med. 2003;  163 1069-1075
  • 23 McGuinness B, Todd S, Passmore P. et al . The effects of blood pressure lowering on development of cognitive impairment and dementia in patients without apparent prior cerebrovascular disease.  Cochrane Database Syst Rev. 2006 Apr 19;  (2) CD004034
  • 24 Poon I O. Effects of antihypertensive drug treatment on the risk of dementia and cognitive impairment.  Pharmacotherapy. 2008;  28 366-375
  • 25 Skoog I, Lernfelt B, Landahl S. et al . 15-year longitudinal study of blood pressure and dementia.  Lancet. 1996;  347 1141-1145
  • 26 Cardiogenic Dementia.  Lancet. 1977;  1 27-28
  • 27 Vogels R L, Scheltens P, Schroeder-Tanka J M. et al . Cognitive impairment in heart failure: a systematic review of the literature.  Eur J Heart Fail. 2007;  9 440-449
  • 28 Deshields T L, McDonough E M, Mannen R K. et al . Psychological and cognitive status before and after heart transplantation.  Gen Hosp Psychiatry. 1996;  18 62S-69S
  • 29 Koide H, Kobayashi S, Kitani M. et al . Improvement of cerebral blood flow and cognitive function following pacemaker implantation in patients with bradycardia.  Gerontology. 1994;  40 279-285
  • 30 Grant I, Heaton R K, McSweeny A J. et al . Neuropsychologic findings in hypoxemic chronic obstructive pulmonary disease.  Arch Intern Med. 1982;  142 1470-1476
  • 31 Prigatano G P, Parsons O, Wright E. et al . Neuropsychological test performance in mildly hypoxemic patients with chronic obstructive pulmonary disease.  J Consult Clin Psychol. 1983;  51 108-116
  • 32 Grant I, Prigatano G P, Heaton R K. et al . Progressive neuropsychologic impairment and hypoxemia. Relationship in chronic obstructive pulmonary disease.  Arch Gen Psychiatry. 1987;  44 999-1006
  • 33 Hjalmarsen A, Waterloo K, Dahl A. et al . Effect of long-term oxygen therapy on cognitive and neurological dysfunction in chronic obstructive pulmonary disease.  Eur Neurol. 1999;  42 27-35
  • 34 Incalzi R A, Gemma A, Marra C. et al . Chronic obstructive pulmonary disease. An original model of cognitive decline.  Am Rev Respir Dis. 1993;  148 418-424
  • 35 Heaton R K, Grant I, McSweeny A J. et al . Psychologic effects of continuous and nocturnal oxygen therapy in hypoxemic chronic obstructive pulmonary disease.  Arch Intern Med. 1983;  143 1941-1947
  • 36 Krop H D, Block A J, Cohen E. Neuropsychologic effects of continuous oxygen therapy in chronic obstructive pulmonary disease.  Chest. 1973;  64 317-322
  • 37 Liesker J J, Postma D S, Beukema R J. et al . Cognitive performance in patients with COPD.  Respir Med. 2004;  98 351-356
  • 38 Fitzpatrick M F, Engleman H, Whyte K F. et al . Morbidity in nocturnal asthma: sleep quality and daytime cognitive performance.  Thorax. 1991;  46 569-573
  • 39 Weersink E J, Zomeren E H, Koeter G H. et al . Treatment of nocturnal airway obstruction improves daytime cognitive performance in asthmatics.  Am J Respir Crit Care Med. 1997;  156 1144-1150
  • 40 Gregg E W, Yaffe van K, Cauley J A. et al . Is diabetes associated with cognitive impairment and cognitive decline among older women? Study of Osteoporotic Fractures Research Group.  Arch Intern Med. 2000;  160 174-180
  • 41 Logroscino G, Kang J H, Grodstein F. Prospective study of type 2 diabetes and cognitive decline in women aged 70 – 81 years.  Brit Med J. 2004;  328 548
  • 42 Yaffe K, Blackwell T, Kanaya A M. et al . Diabetes, impaired fasting glucose, and development of cognitive impairment in older women.  Neurology. 2004;  63 658-663
  • 43 Okereke O I, Kang J H, Cook N R. et al . Type 2 Diabetes Mellitus and Cognitive Decline in Two Large Cohorts of Community-Dwelling Older Adults.  J Am Geriatr Soc. 2008;  56 1028-1036
  • 44 Brands A M, Biessels G J, Haan E H. et al . The effects of type 1 diabetes on cognitive performance: a meta-analysis.  Diabetes Care. 2005;  28 726-735
  • 45 Ryan C M. Diabetes, aging, and cognitive decline.  Neurobiol Aging. 2005;  26 (Suppl 1) 21-25
  • 46 Brownlee de M. Biochemistry and molecular cell biology of diabetic complications.  Nature. 2001;  414 813-820
  • 47 Pappolla M A, Bryant-Thomas T K, Herbert D. et al . Mild hypercholesterolemia is an early risk factor for the development of Alzheimer amyloid pathology.  Neurology. 2003;  61 199-205
  • 48 Roher A E, Esh C, Kokjohn T A. et al . Circle of willis atherosclerosis is a risk factor for sporadic Alzheimer’s disease.  Arterioscler Thromb Vasc Biol. 2003;  23 2055-2062
  • 49 Kivipelto M, Helkala E L, Hanninen T. et al . Midlife vascular risk factors and late-life mild cognitive impairment: A population-based study.  Neurology. 2001;  56 1683-1689
  • 50 Mielke M M, Zandi P P, Sjogren M. et al . High total cholesterol levels in late life associated with a reduced risk of dementia.  Neurology. 2005;  64 1689-1695
  • 51 Solfrizzi V, Panza F, Colacicco A M. et al . Vascular risk factors, incidence of MCI, and rates of progression to dementia.  Neurology. 2004;  63 1882-1891
  • 52 Panza F, Capurso C, D’Introno A. et al . Total cholesterol levels and the risk of mild cognitive impairment and Alzheimer’s disease.  J Am Geriatr Soc. 2007;  55 133-135
  • 53 Solomon A, Kareholt I, Ngandu T. et al . Serum cholesterol changes after midlife and late-life cognition: twenty-one-year follow-up study.  Neurology. 2007;  68 751-756
  • 54 Wirths O, Thelen K, Breyhan H. et al . Decreased plasma cholesterol levels during aging in transgenic mouse models of Alzheimer’s disease.  Exp Gerontol. 2006;  41 220-224
  • 55 Solomon A, Kareholt I, Ngandu T. et al . Serum total cholesterol, statins and cognition in non-demented elderly.  Neurobiol Aging. 2007 Nov 15;  Epub ahead of print
  • 56 Heart Protection Study Collaborative Study Group . MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial.  Lancet. 2002;  360 7-22
  • 57 Madero M, Gul A, Sarnak M J. Cognitive function in chronic kidney disease.  Semin Dial. 2008;  21 29-37
  • 58 Kurella M, Yaffe K, Shlipak M G. et al . Chronic kidney disease and cognitive impairment in menopausal women.  Am J Kidney Dis. 2005;  45 66-76
  • 59 Seliger S L, Siscovick D S, Stehman-Breen C O. et al . Moderate renal impairment and risk of dementia among older adults: the Cardiovascular Health Cognition Study.  J Am Soc Nephrol. 2004;  15 1904-1911
  • 60 Teng E L, Chui H C. The Modified Mini-Mental State (3 MS) examination.  J Clin Psychiatry. 1987;  48 314-318
  • 61 Kurella M, Chertow G M, Fried L F. et al . Chronic kidney disease and cognitive impairment in the elderly: the health, aging, and body composition study.  J Am Soc Nephrol. 2005;  16 2127-2133
  • 62 Olichney J M, Taylor J R, Gatherwright J. et al . Patients with MCI and N 400 or P 600 abnormalities are at very high risk for conversion to dementia.  Neurology. 2008;  70 1763-1770
  • 63 Madan P, Kalra O P, Agarwal S. et al . Cognitive impairment in chronic kidney disease.  Nephrol Dial Transplant. 2007;  22 440-444
  • 64 Kurella M, Chertow G M, Luan J. et al . Cognitive impairment in chronic kidney disease.  J Am Geriatr Soc. 2004;  52 1863-1869
  • 65 Stewart C A, Smith G E. Minimal hepatic encephalopathy.  Nat Clin Pract Gastroenterol Hepatol. 2007;  4 677-685
  • 66 Weissenborn K, Ennen J C, Schomerus H. et al . Neuropsychological characterization of hepatic encephalopathy.  J Hepatol. 2001;  34 768-773
  • 67 McCrea M, Cordoba J, Vessey G. et al . Neuropsychological characterization and detection of subclinical hepatic encephalopathy.  Arch Neurol. 1996;  53 758-763
  • 68 Ferenci P, Lockwood A, Mullen K. et al . Hepatic encephalopathy – definition, nomenclature, diagnosis, and quantification: final report of the working party at the 11th World Congresses of Gastroenterology, Vienna, 1998.  Hepatology. 2002;  35 716-721
  • 69 Groeneweg M, Quero J C, De Bruijn I. et al . Subclinical hepatic encephalopathy impairs daily functioning.  Hepatology. 1998;  28 45-49
  • 70 Lockwood A H. “What’s in a name?” Improving the care of cirrhotics.  J Hepatol. 2000;  32 859-861
  • 71 Clarke R, Refsum H, Birks J. et al . Screening for vitamin B-12 and folate deficiency in older persons.  Am J Clin Nutr. 2003;  77 1241-1247
  • 72 Lindenbaum J, Healton E B, Savage D G. et al . Neuropsychiatric disorders caused by cobalamin deficiency in the absence of anemia or macrocytosis.  N Engl J Med. 1988;  318 1720-1728
  • 73 Hin H, Clarke R, Sherliker P. et al . Clinical relevance of low serum vitamin B 12 concentrations in older people: the Banbury B 12 study.  Age Ageing. 2006;  35 416-422
  • 74 Malouf R, Areosa S astre A. Vitamin B 12 for cognition.  Cochrane Database Syst Rev. 2003;  (3) CD004326
  • 75 Kessler H, Bleich S, Falkai P. et al . Homozystein und Demenzerkrankungen.  Fortschr Neurol Psychiatr. 2003;  71 150-156
  • 76 Riggs K M, Spiro 3 rd A, Tucker K. et al . Relations of vitamin B-12, vitamin B-6, folate, and homocysteine to cognitive performance in the Normative Aging Study.  Am J Clin Nutr. 1996;  63 306-314
  • 77 Quadri P, Fragiacomo C, Pezzati R. et al . Homocysteine and B vitamins in mild cognitive impairment and dementia.  Clin Chem Lab Med. 2005;  43 1096-1100
  • 78 Tucker K L, Qiao N, Scott T. et al . High homocysteine and low B vitamins predict cognitive decline in aging men: the Veterans Affairs Normative Aging Study.  Am J Clin Nutr. 2005;  82 627-635
  • 79 Mooijaart S P, Gussekloo J, Frolich M. et al . Homocysteine, vitamin B-12, and folic acid and the risk of cognitive decline in old age: the Leiden 85-Plus study.  Am J Clin Nutr. 2005;  82 866-871
  • 80 Malouf M, Grimley E J, Areosa S A. Folic acid with or without vitamin B 12 for cognition and dementia.  Cochrane Database Syst Rev. 2003;  (4) CD004514
  • 81 Janowsky J S. Thinking with your gonads: testosterone and cognition.  Trends Cogn Sci. 2006;  10 77-82
  • 82 Tirassa P, Thiblin I, Agren G. et al . High-dose anabolic androgenic steroids modulate concentrations of nerve growth factor and expression of its low affinity receptor (p75-NGFr) in male rat brain.  J Neurosci Res. 1997;  47 198-207
  • 83 Zitzmann M, Weckesser M, Schober O. et al . Changes in cerebral glucose metabolism and visuospatial capability in hypogonadal males under testosterone substitution therapy.  Exp Clin Endocrinol Diabetes. 2001;  109 302-304
  • 84 Azad N, Pitale S, Barnes W E. et al . Testosterone treatment enhances regional brain perfusion in hypogonadal men.  J Clin Endocrinol Metab. 2003;  88 3064-3068
  • 85 Beauchet O. Testosterone and cognitive function: current clinical evidence of a relationship.  Eur J Endocrinol. 2006;  155 773-781
  • 86 Nieschlag E, Swerdloff R, Behre H M. et al . Investigation, treatment and monitoring of late-onset hypogonadism in males. ISA, ISSAM, and EAU recommendations.  Eur Urol. 2005;  48 1-4
  • 87 Cooper D S. Clinical practice. Subclinical hypothyroidism.  N Engl J Med. 2001;  345 260-265
  • 88 Canaris G J, Manowitz N R, Mayor G. et al . The Colorado thyroid disease prevalence study.  Arch Intern Med. 2000;  160 526-534
  • 89 Osterweil D, Syndulko K, Cohen S N. et al . Cognitive function in non-demented older adults with hypothyroidism.  J Am Geriatr Soc. 1992;  40 325-335
  • 90 Volpato S, Guralnik J M, Fried L P. et al . Serum thyroxine level and cognitive decline in euthyroid older women.  Neurology. 2002;  58 1055-1061
  • 91 Badgio P C, Worden B L. Cognitive functioning and aging in women.  J Women Aging. 2007;  19 13-30
  • 92 Burmeister L A, Ganguli M, Dodge H H. et al . Hypothyroidism and cognition: preliminary evidence for a specific defect in memory.  Thyroid. 2001;  11 1177-1185
  • 93 Davis J D, Stern R A, Flashman L A. Cognitive and neuropsychiatric aspects of subclinical hypothyroidism: significance in the elderly.  Curr Psychiatry Rep. 2003;  5 384-390
  • 94 Vardy J, Rourke S, Tannock I F. Evaluation of cognitive function associated with chemotherapy: a review of published studies and recommendations for future research.  J Clin Oncol. 2007;  25 2455-2463
  • 95 Minisini A, Atalay G, Bottomley A. et al . What is the effect of systemic anticancer treatment on cognitive function?.  Lancet Oncol. 2004;  5 273-282
  • 96 Anderson-Hanley C, Sherman M L, Riggs R. et al . Neuropsychological effects of treatments for adults with cancer: a meta-analysis and review of the literature.  J Int Neuropsychol Soc. 2003;  9 967-982
  • 97 Jansen C E, Miaskowski C, Dodd M. et al . A metaanalysis of studies of the effects of cancer chemotherapy on various domains of cognitive function.  Cancer. 2005;  104 2222-2233
  • 98 Hopkins R O, Jackson J C. Long-term neurocognitive function after critical illness.  Chest. 2006;  130 869-878
  • 99 Jackson J C, Hart R P, Gordon S M. et al . Six-month neuropsychological outcome of medical intensive care unit patients.  Crit Care Med. 2003;  31 1226-1234
  • 100 Hopkins R O, Weaver L K, Pope D. et al . Neuropsychological sequelae and impaired health status in survivors of severe acute respiratory distress syndrome.  Am J Respir Crit Care Med. 1999;  160 50-56
  • 101 Rothenhausler H B, Ehrentraut S, Stoll C. et al . The relationship between cognitive performance and employment and health status in long-term survivors of the acute respiratory distress syndrome: results of an exploratory study.  Gen Hosp Psychiatry. 2001;  23 90-96
  • 102 Hopkins R O, Weaver L K, Collingridge D. et al . Two-year cognitive, emotional, and quality-of-life outcomes in acute respiratory distress syndrome.  Am J Respir Crit Care Med. 2005;  171 340-347
  • 103 Mullges W, Berg D, Schmidtke A. et al . Early natural course of transient encephalopathy after coronary artery bypass grafting.  Crit Care Med. 2000;  28 1808-1811
  • 104 Keith J R, Puente A E, Malcolmson K L. et al . Assessing postoperative cognitive change after cardiopulmonary bypass surgery.  Neuropsychology. 2002;  16 411-421
  • 105 Selnes O A, Grega M A, Borowicz L M. et al . Cognitive changes with coronary artery disease: a prospective study of coronary artery bypass graft patients and nonsurgical controls.  Ann Thorac Surg. 2003;  75 1377-1384; discussion 1384 – 1376
  • 106 Selnes O A, McKhann G M. Neurocognitive complications after coronary artery bypass surgery.  Ann Neurol. 2005;  57 615-621
  • 107 Newman M F, Kirchner J L, Phillips-Bute Jr B. et al . Longitudinal assessment of neurocognitive function after coronary-artery bypass surgery.  N Engl J Med. 2001;  344 395-402
  • 108 Selnes O A, Royall R M, Grega M A. et al . Cognitive changes 5 years after coronary artery bypass grafting: is there evidence of late decline?.  Arch Neurol. 2001;  58 598-604
  • 109 Stygall J, Newman S P, Fitzgerald G. et al . Cognitive change 5 years after coronary artery bypass surgery.  Health Psychol. 2003;  22 579-586
  • 110 Mullges W, Babin-Ebell J, Reents W. et al . Cognitive performance after coronary artery bypass grafting: a follow-up study.  Neurology. 2002;  59 741-743
  • 111 Potter G G, Plassman B L, Helms M J. et al . Age effects of coronary artery bypass graft on cognitive status change among elderly male twins.  Neurology. 2004;  63 2245-2249
  • 112 Hlatky M A BC, Boothroyd D. et al . Cognitive function 5 years after randomization to coronary angioplasty or coronary artery bypass graft surgery.  Circulation. 1999;  96 11-15
  • 113 McKhann G M, Grega M A, Borowicz L M. et al . Is there cognitive decline 1 year after CABG? Comparison with surgical and nonsurgical controls.  Neurology. 2005;  65 991-999
  • 114 Selnes O A, Zeger S L. Coronary artery bypass grafting baseline cognitive assessment: essential not optional.  Ann Thorac Surg. 2007;  83 374-376
  • 115 Perry Jr W, Hilsabeck R C, Hassanein T I. Cognitive dysfunction in chronic hepatitis C: a review.  Dig Dis Sci. 2008;  53 307-321
  • 116 Forton D M, Taylor-Robinson S D, Thomas H C. Central nervous system changes in hepatitis C virus infection.  Eur J Gastroenterol Hepatol. 2006;  18 333-338
  • 117 Forton D M, Thomas H C, Murphy C A. et al . Hepatitis C and cognitive impairment in a cohort of patients with mild liver disease.  Hepatology. 2002;  35 433-439
  • 118 Hilsabeck R C, Hassanein T I, Carlson M D. et al . Cognitive functioning and psychiatric symptomatology in patients with chronic hepatitis C.  J Int Neuropsychol Soc. 2003;  9 847-854
  • 119 McAndrews M P, Farcnik K, Carlen P. et al . Prevalence and significance of neurocognitive dysfunction in hepatitis C in the absence of correlated risk factors.  Hepatology. 2005;  41 801-808
  • 120 Cordoba J, Flavia M, Jacas C. et al . Quality of life and cognitive function in hepatitis C at different stages of liver disease.  J Hepatol. 2003;  39 231-238
  • 121 Lawson L J, Perry V H, Gordon S. Turnover of resident microglia in the normal adult mouse brain.  Neuroscience. 1992;  48 405-415
  • 122 Nomenclature and research case definitions for neurologic manifestations of human immunodeficiency virus-type 1 (HIV-1) infection. Report of a Working Group of the American Academy of Neurology AIDS Task Force.  Neurology. 1991;  41 778-785
  • 123 Heaton R K, Grant I, Butters N. et al . The HNRC 500 – neuropsychology of HIV infection at different disease stages. HIV Neurobehavioral Research Center.  J Int Neuropsychol Soc. 1995;  1 231-251
  • 124 Goodkin K, Wilkie F L, Concha M. et al . Aging and neuro-AIDS conditions and the changing spectrum of HIV-1-associated morbidity and mortality.  J Clin Epidemiol. 2001;  54 (Suppl 1) S35-S43
  • 125 White D A, Heaton R K, Monsch A U. Neuropsychological studies of asymptomatic human immunodeficiency virus-type-1 infected individuals. The HNRC Group. HIV Neurobehavioral Research Center.  J Int Neuropsychol Soc. 1995;  1 304-315
  • 126 Ances B M, Ellis R J. Dementia and neurocognitive disorders due to HIV-1 infection.  Semin Neurol. 2007;  27 86-92
  • 127 Valcour V G, Shikuma C M, Watters M R. et al . Cognitive impairment in older HIV-1-seropositive individuals: prevalence and potential mechanisms.  Aids. 2004;  18 (Suppl 1) S79-S86
  • 128 Hult B, Chana G, Masliah E. et al . Neurobiology of HIV.  Int Rev Psychiatry. 2008;  20 3-13
  • 129 Strachan M W, Price J F, Frier B M. Diabetes, cognitive impairment, and dementia.  Brit Med J. 2008;  336 6

Dr. Thorleif Etgen

Neurologische Klinik, Klinikum Traunstein

Cuno-Niggl-Straße 3

83278 Traunstein

Email: thorleif.etgen@klinikum-traunstein.de

    >