Subscribe to RSS
DOI: 10.1055/s-0028-1088196
Synthesis of (Z)-1-Organylthiobut-1-en-3-ynes: Hydrothiolation of Symmetrical and Unsymmetrical Buta-1,3-diynes
Publication History
Publication Date:
16 March 2009 (online)
Abstract
Hydrothiolation of 1-organylbuta-1,3-diynes and 1,4-diorganylbuta-1,3-diynes with the sodium organylthiolate anions, which were generated in situ by reacting diphenyl and dibutyl disulfide with NaBH4 in ethanol, results in the regio-, stereo-, and chemoselective formation of (Z)-1-organylthio-4-organylbut-1-en-3-ynes and (Z)-1-organylthio-1,4-diorganylbut-1-en-3-ynes, respectively.
Key words
hydrothiolation - organylthiolate anion - vinyl sulfides - 1,3-diacetylenes - (Z)-1-organylthiobut-1-en-3-ynes
- For the synthesis of griseoviridin, see:
-
1a
Marcantoni E.Massaccesi M.Petrini M. J. Org. Chem. 2000, 65: 4553 -
1b
Kuligowski C.Bezzenine-Lafollée S.Chaume G.Mahuteau J.Barrière J.-C.Bacqué E.Pancrazi A.Ardisson J. J. Org. Chem. 2002, 67: 4565 -
1c For the synthesis of benzylthicrellidone,
see, for example:
Lan HW.Cooke PA.Pattenden G.Bandaranayake WM.Wickramasinghe WA. J. Chem Soc., Perkin Trans. 1 1999, 847 -
2a
Corey EJ.Shulman JI. J. Am. Chem. Soc. 1970, 92: 5522 -
2b
Oshima K.Shimoji K.Takahashi H.Yamamoto H.Nozaki H. J. Am. Chem. Soc. 1973, 95: 2694 -
2c
Mura AJ.Bennet DA.Cohen T. Tetrahedron Lett. 1975, 16: 4433 -
2d
Mura AJ.Majetich G.Grieco PA.Cohen T. Tetrahedron Lett. 1975, 16: 4437 -
2e
Mukayama T.Fukuyama S.Kumamoto T. Tetrahedron Lett. 1968, 3787 -
2f
Waters MS.Cowen JA.McWilliams JC.Maligres PE.Askin D. Tetrahedron Lett. 2000, 41: 141 -
2g
Sato T.Taguchi D.Suzuki C.Fujisawa S. Tetrahedron 2001, 57: 493 -
2h
Imanishi T.Ohara T.Sugiyama K.Ueda Y.Takemoto Y. J. Chem. Soc., Chem. Commun. 1992, 269 -
2i
Guerrero PG.Dabdoub MJ.Marques FA.Wosch C.Baroni ACM.Ferreira AG. Synth. Commun. 2008, 38: 4379 - 3
Fortes CC.Fortes HC.Gonçalves DRG. J. Chem. Soc., Chem. Commun. 1982, 857 - 4
Oshima K.Takahashi H.Yamamoto H.Nozaki H. J. Am. Chem. Soc. 1973, 95: 2693 -
5a
Cohen T.Weisenfeld RB. J. Org. Chem. 1979, 44: 3601 -
5b
Screttas CG.Micha-Screttas M. J. Org. Chem. 1978, 43: 1064 -
5c
Screttas CG.Micha-Screttas M. J. Org. Chem. 1979, 44: 713 -
5d
Foubelo F.Gutierrez A.Yus M. Tetrahedron Lett. 1999, 40: 8173 - 6
Hojo M.Harada H.Yoshizawa J.Hosomi A. J. Org. Chem. 1993, 58: 6541 - 7
Kanemasa S.Kobayashi H.Tanaka J.Tsuge O. Bull. Chem. Soc. Jpn. 1988, 61: 3957 -
8a For
a review, see:
De Lucchi O.Pasquato L. Tetrahedron 1988, 44: 6755 -
8b
Dittami JP.Nie XY.Nie H.Ramanathan H.Buntel C.Rigatti S.Bordner J.Decosta DL.Williard P. J. Org. Chem. 1992, 57: 1151 - 9
Harmata M.Jones D. Tetrahedron Lett. 1996, 37: 783 -
10a See,
for instance:
Corey EJ.Seebach D. J. Org. Chem. 1966, 31: 4097 -
10b For a review, see:
Kolb M. Synthesis 1990, 171 -
11a
Trost BM.Lavoie AC. J. Am. Chem. Soc. 1983, 105: 5075 -
11b
Trost BM.Tanigawa Y. J. Am. Chem. Soc. 1979, 101: 4413 - 12
Barton DHR.Boar RB. J. Chem. Soc., Perkin Trans. 1 1973, 654 -
13a
Okamura H.Miura M.Takei H. Tetrahedron Lett. 1979, 20: 43 -
13b
Trost BM.Ornstein PL. Tetrahedron Lett. 1981, 22: 3463 -
13c
Wenkert E.Ferreira TW.
J. Chem. Soc., Chem. Commun. 1982, 840 -
13d
Truce WE.Goldhamer DL.Kruse RB. J. Am. Chem. Soc. 1959, 81: 4931 -
13e
Truce WE.Heine RF. J. Am. Chem. Soc. 1957, 79: 5311 -
13f
Freeman F.Lu H.Zeng Q.Rodriguez E. J. Org. Chem. 1994, 59: 4350 -
13g
Zschunke A.Muegge C.Hintzsche E.Schroth W. J. Prakt. Chem. 1992, 334: 141 - 14
Levanova EP.Volkov AN.Volknova KA. Zh. Org. Khim. 1983, 19: 62 -
15a
Truce WE.Goldhamer DL.Kruse RB. J. Am. Chem. Soc. 1959, 81: 4931 -
15b
Truce WE.Heine RF. J. Am. Chem. Soc. 1957, 79: 5311 -
16a
Peach ME. In The Chemistry of the Thiol Group Vol. 2:Patai S. Wiley; London: 1974. -
16b
Ichinose Y.Wakamatsu K.Nozaki K.Birbaum J.-L.Oshima K.Utimoto K. Chem. Lett. 1987, 1647 -
16c
Benati L.Capella L.Montevecchi PC.Spagnolo P. J. Chem. Soc., Perkin Trans. 1 1995, 1035 -
16d
Griesbaum K. Angew. Chem., Int. Ed. Engl. 1970, 9: 273 ; and references therein -
17a
Shostakovskii MF.Bogdanova AV. The Chemistry of Diacetylenes Halsted Press; Jerusalem: 1974. -
17b
Bohlmann F.Bornowski H.Kramer D. Chem. Ber. 1963, 96: 584 - 18
Brandsma L. Preparative Acetylenic Chemistry Elsevier; New York: 1971. - 22
Dabdoub MJ.Baroni ACM.Lenardão EJ.Gianeti TR.Hurtado GR. Tetrahedron 2001, 57: 4271 - 23
Dabdoub MJ.Dabdoub VB. Tetrahedron 1995, 36: 9839
References and Notes
Typical Procedure for the Synthesis of ( Z )-1-Phenylthio-1,4-diorganylbut-1-en-3-ynes To a solution of 1,4-diphenylbuta-1,3-diyne 1a ¹7 (1.797 g, 5 mmol) and PhSSPh (1.845 g, 2.5 mmol) in 95% EtOH (20 mL) under a nitrogen atmosphere, NaBH4 (0.57 g, 15 mmol) was added at r.t. and under vigorous stirring. Gas evolution was observed during addition. The reaction mixture was stirred under reflux for 3 h, allowed to reach r.t., diluted with EtOAc (3 × 20 mL), and washed with brine (3 × 30 mL) and H2O (3 × 30 mL). After drying the organic phase over anhyd MgSO4, the solvent was removed under reduced pressure and the residue purified by flash chromatography on SiO2 using hexane as mobile phase, to give pure (Z)-1-phenylthio-1,4-diphenylbut-1-en-3-yne (2a) as a white solid; mp 92-95 ˚C; yield 72%. GC-MS: m/z (%) = 312 [M+], 202, 149, 105, 77, 28 (100). IR (KBr): 3072 (m), 2195 (m), 1680 (m), 1580 (s), 1481 (vs), 1440 (vs), 1071 (m), 1024 (m), 750 (vs), 740 (s), 687 (s) cm-¹. ¹H NMR (400 MHz, CDCl3): δ = 6.32 (s, 1 H), 7.03-7.7 (m, 15 H). ¹³C NMR (100 MHz, CDCl3): δ = 87.60, 98.36, 112.27, 123.34, 126.39, 127.49, 127.88, 127.93, 128.27, 128.35, 128.64, 128.75, 129.25, 129.51, 131.60, 138.38, 147.20.
20Typical Procedure for the Synthesis of ( Z )-1-Phenylthio-4-organylbut-1-en-3-ynes A solution of 1-phenylbuta-1,3-diyne (1c, 10 mmol) was obtained in situ by reaction of 2-hydroxy-2-methyl-6-phenylhexa-3,5-diyne (1e, 1.84 g, 10 mmol) with powered NaOH (25 mg) in dry xylene (11 mL) under reflux for 15 min.²² The temperature was then allowed to reach r.t., and 95% EtOH (70 mL) and PhSSPh (1.845 g, 5.0 mmol) were added. The reaction was run under an atmosphere of N2 and NaBH4 (0.57 g, 15 mmol) was added. The resulting reaction mixture was refluxed for 3 h, diluted with EtOAc (70 mL), and washed with brine (4 × 30 mL). After drying the organic phase over anhyd MgSO4, the solvent was removed under reduced pressure, and the residue purified by flash chromatography on SiO2 using hexane as mobile phase, to give the pure phenylthio enyne 2c as a yellow oil; yield 75%. GC-MS: m/z = 236 [M+], 202, 149, 126, 115, 77, 51, 28 (100). IR (neat): 689 (vs), 742 (s), 756 (s), 816 (m), 1480 (m), 1488 (m), 1553 (w), 1585 (w), 2205 (w), 3055 (w) cm-¹. ¹H NMR (400 MHz, CDCl3): δ = 5.83 (d, J = 10 Hz, 1 H), 6.75 (d, J = 10 Hz, 1 H), 7.22-7.54 (m, 10 H). ¹³C NMR (100 MHz, CDCl3): δ = 85.62, 97.95, 106.36, 123.26, 127.45, 128.30, 129.18, 129.19, 129.23, 130.31, 130,33, 130.36, 130.39, 130.41, 131.45, 131.49, 134.73, 138.91.
211-Butylthio-4-cyclohexenylbut-1-en-3-yne (2j) The same procedure for obtaining 2c was performed,²0 however, 6-cyclohexenyl-2-methylhexa-3,5-diyn-2-ol (1k) and BuSSBu were used as starting materials, affording the pure compound 2j as a yellow oil; yield 50%. ¹H NMR (300 MHz, CDCl3): δ = 0.74-1.72 (m, 11 H), 2.07 (m, 2 H), 2.15 (m, 2 H), 2.74 (t, J = 7.2 Hz, 2 H)), 5.56 (d, J = 9.6 Hz, 1 H), 6.11 (s, 1 H), 6.39 (d, J = 9.6 Hz, 1 H). ¹³C NMR (75 MHz, CDCl3): δ = 13.4, 21.4, 21.5, 22.2, 25.6, 29.1, 32.4, 33.3, 83.4, 99.1, 104.8, 120.8, 134.2, 138.7.