Synlett 2009(7): 1136-1140  
DOI: 10.1055/s-0028-1088150
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of Highly Functionalized Proline Derivatives via a One-pot Michael/Aldol Addition-Cyclization Approach

Uli Kazmaier*, Christian Schmidt
Institut für Organische Chemie, Universität des Saarlandes, 66123 Saarbrücken, Germany
Fax: +49(681)3022409; e-Mail: u.kazmaier@mx.uni-saarland.de;
Further Information

Publication History

Received 5 January 2009
Publication Date:
20 March 2009 (online)

Abstract

Chelated enolates undergo Michael addition towards halogenated α,β-unsaturated esters in a highly stereoselective fashion. The enolates formed can be trapped with aldehydes in a stereoselective aldol reaction, before subsequent cyclization gives rise to substituted proline derivative. Up to for stereogenic centers can be formed in this new one-pot reaction.

    References and Notes

  • 1a Shimamoto K. Ohfune Y. J. Med. Chem.  1996,  39:  407 ; and references cited therein
  • 1b Shimamoto K. Ohfune Y. Synlett  1993,  919 
  • 1c Ornstein PL. Bleisch TJ. Arnold MB. Wright RA. Johnson BG. Schoepp DD. J. Med. Chem.  1998,  41:  346 
  • 1d Pellicciari R. Costantino G. Curr. Opin. Chem. Biol.  1999,  3:  433 
  • 1e Moloney MG. Nat. Prod. Rep.  1999,  16:  485 ; and references cited therein
  • 2 Nitta I. Watase H. Tomiie Y. Nature (London)  1958,  181:  761 
  • 3 For a recent review, see: Wang Q. Yu S. Simonyi A. Sun G. Sun A. Mol. Neurobiol.  2005,  31:  3 ; and references cited therein
  • 4 Sperk G. Prog. Neurobiol.  1994,  42:  1 
  • 5a Goodenough S. Schleusner D. Pietrzik C. Skutella T. Behl C. Neuroscience  2005,  132:  581 
  • 5b Mohmmad A. Sultana R. Keller J. St. Clair D. Markesbery W. Butterfield D. J. Neurochem.  2006,  96:  1322 
  • 6a Coyle JT. Schwarcz R. Nature (London)  1976,  263:  244 
  • 6b McGeer EG. McGeer PL. Nature (London)  1976,  263:  517 
  • 7 Yoo S. Lee S. Kim N. Tetrahedron Lett.  1988,  29:  2195 
  • 8 Carpes MJS. Miranda P. Correira CR. Tetrahedron Lett.  1997,  38:  1869 
  • 9 Sabol J. Flynn G. Friedrich D. Huber EW. Tetrahedron Lett.  1997,  38:  3687 
  • 10 Karoyan P. Chassaing G. Tetrahedron Lett.  2002,  43:  253 
  • Reviews:
  • 11a Kazmaier U. Amino Acids  1996,  11:  283 
  • 11b Kazmaier U. Liebigs Ann./Recl.  1997,  285 ; and references cited therein
  • 12a Pohlman M. Kazmaier U. Org. Lett.  2003,  5:  2631 
  • 12b Pohlman M. Kazmaier U. Lindner T. J. Org. Chem.  2004,  69:  6909 
  • 12c Mendler B. Kazmaier U. Huch V. Veith M. Org. Lett.  2005,  7:  2643 
  • 12d Mendler B. Kazmaier U. Synthesis  2005,  2239 
  • 13a Kazmaier U. Zumpe FL. Eur. J. Org. Chem.  2001,  4067 
  • 13b Kazmaier U. Curr. Org. Chem.  2003,  317 
  • 13c Kazmaier U. Pohlman M. Synlett  2004,  623 
  • 13d Kazmaier U. Lindner T. Angew. Chem. Int. Ed.  2005,  44:  3303 ; Angew. Chem. 2005, 117, 3368
  • 13e Bauer M. Kazmaier U. Recent Res. Devel. Org. Chem.  2005,  9:  49 
  • 14 Schmidt C. Kazmaier U. Org. Biomol. Chem.  2008,  6:  4643 
  • 15 Schmidt C. Kazmaier U. Eur. J. Org. Chem.  2008,  887 
  • 16a Grandel R. Kazmaier U. Nuber B. Liebigs Ann.  1996,  1143 
  • 16b Grandel R. Kazmaier U. Tetrahedron Lett.  1997,  38:  8009 
  • 16c Grandel R. Kazmaier U. J. Org. Chem.  1998,  63:  4524 
  • 16d Kummeter M. Kazmaier U. Eur. J. Org. Chem.  2003,  3325 
  • 18 No epimerization of the ester 7a was observed. According to Seebach et al. LHMDS is not able to deprotonate amino acid esters except glycine and sarcosine, see: Seebach D. Beck AK. Studer A. In Modern Synthetic Methods   Vol. 7:  Ernst B. Leumann C. Verlag Helvetica Chimica Acta; Basel: 1995.  p.1-178  ; and references cited therein
  • 20a Weygand F. Frauendorfer E. Chem. Ber.  1970,  103:  2437 
  • 20b Bergeron RJ. McManis JS. J. Org. Chem.  1988,  53:  3108 
  • 20c Kazmaier U. Krebs A. Tetrahedron Lett.  1999,  40:  479 
17

In some cases the reactions of chelated enolates with aromatic aldehydes proceed with low diastereoselectivicity, probably because of the reversibility of the aldol process.

19

It should be mentioned, that NMR is not a suitable method for determination of the isomeric ratios, because in addition to the signals of the different isomers, in general a double set of signals is observed caused by rotamers (hindered rotation around the secondary amide bond).

21

General Procedure for Domino Michael-Aldol Additions-Cyclizations
In a Schlenk flask HMDS (0.3 mL, 1.42 mmol) was dissolved in THF (2 mL). The solution was cooled to -78 ˚C before n-BuLi (1.6 M, 0.78 mL, 1.25 mmol) was added. The cooling bath was removed and the solution was allowed to warm up for 15 min, before it was cooled again to -78 ˚C. In a second Schlenk flask ZnCl2 (80 mg, 0.57 mmol) was dried with a heat gun in high vacuum, before it was dissolved in THF (3 mL). After addition of TFA-Gly-Ot-Bu (115 mg, 0.5 mmol) the solution was cooled to -78 ˚C, before the fresh prepared LHMDS solution was added. Then, 15 min later, the Michael acceptor (0.45 mmol) was added in THF (2 mL). After 2 h the corresponding aldehyde (1-1.5 mmol) was added and the reaction mixture was allowed to r.t. overnight. The solution was diluted with Et2O before 1 N KHSO4 was added. The layers were separated, the aqueous phase was washed twice with CH2Cl2, and the combined organic layers were dried (Na2SO4). After evaporation of the solvent in vacuo the crude product was purified by flash chromatography (SiO2, hexanes-EtOAc).

22

Spectroscopic and Analytical Data of Selected Products 9
Compound 9a
Major rotamer, (2S,3S,4R,5R)-9a: ¹H NMR (500 MHz, CDCl3): δ = 0.91 (d, J = 6.6 Hz, 2 H), 1.00 (d, J = 6.5 Hz, 2 H), 1.45 (s, 9 H), 1.56 (m, 1 H), 1.94 (m, 1 H), 2.24 (m, 1 H), 2.54 (dd, J = 11.6, 2.6 Hz, 1 H), 3.01 (m, 1 H), 3.21 (ddd, J = 12.2, 9.9, 2.4 Hz, 1 H), 3.29 (br s, 1 H), 3.63 (m, 1 H), 3.75 (s, 3 H), 3.98 (dd, J = 9.8, 9.8 Hz, 1 H), 4.38 (d, J = 7.9 Hz, 1 H). ¹³C NMR (125 MHz, CDCl3): δ = 19.2, 19.8, 27.6, 27.7, 33.1, 40.2, 46.1 (J = 3.0 Hz), 47.5, 52.0, 62.9, 77.4, 83.0, 115.8 (J = 287.6 Hz), 157.3 (J = 37.4 Hz), 168.8, 172.2.
Minor rotamer (selected signals): ¹H NMR (500 MHz, CDCl3): δ = 1.44 (s, 9 H), 1.78 (m, 1 H), 2.53 (dd, J = 11.5, 2.5 Hz, 1 H), 3.12 (m, 1 H), 3.77 (s, 3 H), 3.83 (dd, J = 11.9, 10.0 Hz, 1 H), 4.48 (dd, J = 7.4, 1.4 Hz, 1 H). ¹³C NMR (125 MHz, CDCl3): δ = 24.4, 32.0, 42.8, 47.9, 52.0, 61.8 (J = 2.7 Hz), 83.3, 168.9, 172.5.
Major rotamer, (2S,3S,4R,5S)-9a: ¹H NMR (500 MHz, CDCl3): δ = 0.89 (d, J = 6.8 Hz, 2 H), 1.02 (d, J = 6.7 Hz, 2 H), 1.43 (m, 1 H) 1.44 (s, 9 H), 1.80 (m, 1 H), 2.04 (m, 1 H), 2.57 (dd, J = 7.8, 2.5 Hz, 1 H), 2.62 (br s, 1 H), 3.02 (m, 1 H), 3.56-3.65 (m, 2 H), 3.71 (s, 3 H), 3.98 (dd, J = 10.1, 9.4 Hz, 1 H), 4.61 (d, J = 7.8 Hz, 1 H). ¹³C NMR (125 MHz, CDCl3): δ = 19.1, 19.7, 27.9, 28.0, 34.2, 39.6, 46.0 (J = 3.5 Hz), 47.7, 51.9, 62.8, 75.6, 83.1, 168.1, 174.4.
Minor rotamer (selected signals): ¹H NMR (500 MHz, CDCl3): δ = 1.45 (s, 9 H), 3.11 (m, 1 H), 3.72 (s, 3 H), 4.65 (dd, J = 7.4,1.4 Hz, 1 H). ¹³C NMR (125 MHz, CDCl3): δ = 19.0, 19.7, 47.1, 61.6 (J = 2.8 Hz), 83.6, 168.0, 174.2. GC (isothermic, 170 ˚C): t R [(±)-(2S,3S,4R,5S)-9a] = 39.96 min; t R [(±)-(2S,3S,4R,5R)-9a] = 49.87 min. HMRS (CI): m/z [M + H]+ calcd for C18H29F3NO6: 412.1947; found: 412.1991. Anal. Calcd for C18H28F3NO6 (411.42): C, 52.55; H, 6.86; N, 3.40. Found: C, 52.37; H, 6.71; N, 3.42.
Compound 9b
Major rotatmer, (2S,3S,4R,5R)-9b: ¹H NMR (500 MHz, CDCl3): δ = 0.89 (s, 9 H, 15-H), 1.46 (s, 9 H, 7-H), 1.50 (br s, 1 H), 2.02 (m, 1 H), 2.29 (m, 1 H), 2.58 (dd, J = 11.2, 2.3 Hz, 1 H), 2.92 (m, 1 H), 3.32 (dd, J = 10.3, 2.1 Hz, 1 H), 3.64 (m, 1 H), 3.74 (s, 3 H), 3.97 (dd, J = 9.8, 9.8 Hz, 1 H), 4.34 (d, J = 7.6 Hz, 1 H). ¹³C NMR (125 MHz, CDCl3): δ = 26.0, 27.7, 27.8, 35.8, 42.1, 44.8, 46.0 (J = 3.5 Hz), 52.1, 62.8, 79.1, 82.9, 115.8 (J = 287.6 Hz), 157.3 (J = 37.4 Hz), 168.6, 174.4.
Minor rotamer (selected signals): ¹H NMR (500 MHz, CDCl3): δ = 0.89 (s, 9 H), 1.45 (s, 9 H), 1.87 (m, 1 H), 2.56 (dd, J = 11.3, 2.2 Hz, 1 H), 3.03 (m, 1 H), 3.35 (dd, J = 10.0, 2.0 Hz, 1 H), 3.75 (s, 3 H), 3.82 (dd, J = 11.5, 10.3 Hz, 1 H). ¹³C NMR (125 MHz, CDCl3): δ = 27.7, 35.8, 45.0, 45.4, 79.1, 83.3, 169.7, 174.2. GC (isothermic, 180 ˚C): t R [(±)-(2S,3S,4R,5S)-9b] = 32.33 min; t R [(±)-(2S,3S,4R,5R)-9b] = 35.17 min. Anal. Calcd for C19H30F3NO6 (425.44): C, 53.64; H, 7.11; N, 3.29. Found: C, 53.76; H, 6.85; N, 3.41.
Compound 9e
Major rotamer, (2S,3S,4R,5R)-9e: ¹H NMR (500 MHz, CDCl3): δ = 0.96 (t, J = 7.4 Hz, 3 H), 1.43 (s, 9 H), 1.50 (m, 2 H), 1.87 (br s, 1 H), 1.94 (m, 1 H), 2.25 (m, 1 H), 2.54 (dd, J = 11.6, 2.7 Hz, 1 H), 3.00 (m, 1 H), 3.59-3.66 (m, 2 H), 3.74 (s, 3 H), 3.97 (dd, J = 9.7, 9.7 Hz, 1 H), 4.45 (d, J = 8.0 Hz, 1 H). ¹³C NMR (125 MHz, CDCl3): δ = 10.5, 27.7, 27.8, 29.1, 39.7, 46.2 (J = 3.4 Hz), 49.9, 51.9, 62.9, 72.9, 83.0, 116.1 (J = 287.4 Hz), 155.9 (J = 37.4 Hz), 168.8, 172.3.
Minor rotamer (selected signals): ¹H NMR (500 MHz, CDCl3): δ = 1.42 (s, 9 H), 1.78 (m, 1 H), 2.33 (dd, J = 11.6, 2.7 Hz, 1 H), 3.11 (m, 1 H), 3.75 (s, 3 H), 3.82 (dd, J = 10.0, 10.0 Hz, 1 H), 4.50 (dd, J = 7.4, 1.0 Hz, 1 H). ¹³C NMR (125 MHz, CDCl3): δ = 42.7, 47.2, 61.8 (J = 2.7 Hz), 72.8, 83.4, 168.9, 172.2. The signals of the minor diastereomer could not be separated from these of the major isomers.
GC (155 ˚C, 60 min; 5˚/min; 180 ˚C, 3 min): t R [(±)-(2S,3S,4R,5S)-9e] = 66.10 min; t R [(±)-(2S,3S,4R,5R)-9e] = 75.16 min. Anal. Calcd for C17H26F3NO6 (397.39): C, 51.38; H, 6.56; N, 3.52. Found: C, 50.98; H, 6.37; N, 3.56.

23

Unfortunately the aldol products obtained with aromatic aldehydes could not be analyzed by GC; NMR has to be used in this case. Therefore, we were not able to determine exact ratios, but the NMR spectra indicated that the isomers were formed in comparable amounts.