Synlett 2009(5): 783-786  
DOI: 10.1055/s-0028-1087941
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Efficient Asymmetric Synthesis of Oseltamivir from d-Mannitol

Tadakatsu Mandai*, Tetsuta Oshitari
Department of Life Science, Kurashiki University of Science & the Arts, 2640, Nishinoura, Tsurajima, Kurashiki 712-8505, Japan
Fax: +81(86)4401062; e-Mail: ted@chem.kusa.ac.jp;
Further Information

Publication History

Received 11 December 2008
Publication Date:
25 February 2009 (online)

Abstract

A highly practical asymmetric synthesis of oseltamivir has been accomplished in 18 steps from d-mannitol without any chromatographic purification, which features intramolecular aldol condensation of dialdehyde with a 3-pentyl ether moiety in constructing densely functionalized cyclohexene ring of oseltamivir.

    References and Notes

  • 2a Kim CU. Lew W. Williams MA. Liu H. Zhang L. Swaminathan S. Bischofberger N. Chen MS. Mendel DB. Tai CY. Laver WG. Stevens RC. J. Am. Chem. Soc.  1997,  119:  681 
  • 2b Rohloff JC. Kent KM. Postich MJ. Becker MW. Chapman HH. Kelly DE. Lew W. Louie MS. McGee LR. Prisbe EJ. Schultze LM. Yu RH. Zhang L. J. Org. Chem.  1998,  63:  4545 
  • 2c Federspiel M. Fischer R. Henning M. Mair H.-J. Oberhauser T. Rimmler G. Albiez T. Bruhin J. Estermann H. Gandert C. Göckel V. Götzö S. Hoffmann U. Huber G. Janatsch G. Lauper S. Röckel-Stäbler O. Trusssardi R. Zwahlen AG. Org. Process Res. Dev.  1999,  3:  266 
  • 2d Karpf M. Trussardi R. J. Org. Chem.  2001,  66:  2044 
  • 2e Harrington PJ. Brown JD. Foderaro T. Hughes RC. Org. Process Res. Dev.  2004,  8:  86 
  • 3 Farina V. Brown JD. Angew. Chem. Int. Ed.  2006,  45:  7330 
  • 4a Yeung Y.-Y. Hong S. Corey EJ. J. Am. Chem. Soc.  2006,  128:  6310 
  • 4b Fukuta Y. Mita T. Fukuda N. Kanai M. Shibasaki M. J. Am. Chem. Soc.  2006,  128:  6312 
  • 4c Cong X. Yao ZJ. J. Org. Chem.  2006,  71:  5365 
  • 4d Mita T. Fukuda N. Roca FX. Kanai M. Shibasaki M. Org. Lett.  2007,  9:  259 
  • 4e Yamatsugu K. Kamijo S. Suto Y. Kanai M. Shibasaki M. Tetrahedron Lett.  2007,  48:  1403 
  • 4f Bromfield KM. Graden H. Hagberg DP. Olsson T. Kann N. Chem. Commun.  2007,  3183 
  • 4g Satoh N. Akiba T. Yokoshima S. Fukuyama T. Angew. Chem. Int. Ed.  2007,  46:  5734 
  • 4h Shie J.-J. Fang J.-M. Wang S.-Y. Tsai K.-C. Cheng Y.-SE. Yang A.-S. Hsiao S.-C. Su C.-Y. Wong C.-H. J. Am. Chem. Soc.  2007,  129:  11892 
  • 4i Trost BM. Zhang T. Angew. Chem. Int. Ed.  2008,  47:  1 
  • 4j Zutter U. Iding H. Spurr P. Wirz B. J. Org. Chem.  2008,  73:  4895 
  • 4k Shie J.-J. Fang J.-M. Wong C.-H. Angew. Chem. Int. Ed.  2008,  47:  5788 
  • 4l Satoh N. Akiba T. Yokoshima S. Fukuyama T. Tetrahedron  2009,  in press
  • 4m Yamatsugu K. Yin L. Kamijo S. Kimura Y. Kanai M. Shibasaki M. Angew. Chem. Int. Ed.  2009,  48:  1070 
  • Ishikawa H. Suzuki T. Hayashi Y. Angew. Chem. Int. Ed.  2009,  48:  1304 
  • 6 Schmid CR. Bradley DA. Synthesis  1992,  587 
  • 8 Johnson WS. Werthemann L. Bartlett WR. Brocksom TJ. Li T.-T. Faulkner DJ. Petersen MR. J. Am. Chem. Soc.  1970,  92:  741 
  • A solution of ester 4 in toluene was added dropwise to a solution of DIBAL-H in toluene. As the relevant papers, see:
  • 10a Takano S. Akiyama M. Sato S. Ogasawara K. Chem. Lett.  1983,  1593 
  • 10b Mori A. Fujiwara J. Maruoka K. Yamamoto H. Tetrahedron Lett.  1983,  24:  4581 
  • 12 Sharpless KB. Amberg W. Bennani YL. Crispino GA. Hartung J. Jeong K.-S. Kwong H.-L. Morikawa K. Wang Z.-M. Xu D. Zhang X.-L. J. Org. Chem.  1992,  57:  2768 
  • 15 Worster PM. Leznoff CC. McArthur CR. J. Org. Chem.  1980,  45:  174 
  • 18a Anelli PL. Biffi C. Montanari F. Quici S. J. Org. Chem.  1987,  52:  2559 
  • 18b Anelli PL. Montanari F. Quici S. Org. Synth.  1990,  69:  212 
  • 18c Leanna MR. Sowin TJ. Morton HE. Tetrahedron Lett.  1992,  33:  5029 
  • 19a Corey EJ. Danheiser RL. Chandrasekaran S. Siret P. Keck GE. Gras J.-L. J. Am. Chem. Soc.  1978,  100:  8031 
  • 19b Snyder SA. Corey EJ. Tetrahedron Lett.  2006,  47:  2083 
  • 21 Gonzalez-Bello C. Coggins JR. Hawkins AR. Abell C. J. Chem. Soc., Perkin Trans. 1  1999,  849 
  • 23 Osby JO. Martin MG. Ganem B. Tetrahedron Lett.  1984,  25:  2093 
1

Present address: School of Pharmaceutical Sciences, Teikyo University, 1091-1 Suarashi, Sagamiko, Sagamihara, 229-0195, Japan.

5

for a recent review on the synthesis of oseltamivir (1), see: Shibasaki, M.; Kanai, M. Eur. J. Org. Chem. 2008, 1839; see also ref. 3.

7

The optical purity of 3 was determined as follows. The HPLC analysis [Chiralcel OD; λ = 254 nm; eluent: hexane-EtOH (9:1); flow rate: 1.3 mL/min] of 3,5-dinitrobenzoate of 3 showed the two peaks based on their two diastereomers at t R = 11.4 min and 22.3 min, respectively. On the other hand, those of racemic 3, prepared from glycerol via acetalization, Swern oxidation, and Grignard reaction, showed four peaks at t R = 11.4 min, 14.5 min, 18.7 min, and 22.2 min, respectively. This observation surely indicates that 2 and 3 are formed without racemization throughout the sequential reactions.

9

Compound 4: colorless oil; [α]D ²¹.6 +24.0 (c 1.23, CHCl3); bp 110-112 ˚C/6.66˙10-4 bar. ¹H NMR (500 MHz, CDCl3): δ = 5.80 (dt, J = 15.3, 6.4 Hz, 1 H), 5.48 (dd, J = 15.3, 7.9 Hz, 1 H), 4.45 (ddd, J = 8.25, 7.95, 6.1 Hz, 1 H), 4.13 (q, J = 7.0 Hz, 2 H), 4.10 (dd, J = 7.95, 6.1 Hz, 1 H), 3.51 (dd, J = 8.25, 7.95 Hz, 1 H), 2.43-2.36 (m, 4 H), 1.68-1.60 (m, 4 H), 1.25 (t, J = 7.0 Hz, 3 H), 0.95-0.88 (m, 6 H). ¹³C NMR (125 MHz, CDCl3): δ = 172.7, 133.3, 128.5, 113.0, 77.3, 69.9, 60.3, 33.5, 29.9, 29.8, 27.4, 14.2, 8.1, 8.0. HRMS (EI+): m/z calcd for C14H24O4: 256.1675; found: 256.1655.

11

First we prepared a corresponding dibenzyl ether of 5a, which proved to be cleaved in a later azide-formation step affording a complex mixture.

13

The attempted dihydroxylations with OsO4/NMO and with AD-mix-α provided a 1:1 to 1:2 mixture of diastereomers with respect to the 3-pentyloxy group.

14

Hydrogenolysis (10% Pd/C, EtOAc, r.t., 48 h) of 7a also provided 7b with poor reproducibility probably owing to poisoning by the accumulated contaminations.

16

Compound 8b: [α]D ²¹.5 -19.2 (c 1.07, CHCl3); mp 142.1-143.5 ˚C. ¹H NMR (500 MHz, CDCl3): δ = 7.85-7.70 (m, 4 H), 6.77 (d, J = 9.8 Hz, 1 H), 4.77-4.72 (m, 1 H), 4.60-4.54 (m, 1 H), 3.80-3.60 (m, 5 H), 3.25-3.14 (m, 2 H), 2.28-2.18 (m, 1 H), 1.98 (s, 3 H), 1.95-1.86 (m, 1 H), 1.75 (br s, 1 H), 1.55-1.30 (m, 5 H), 1.11-0.98 (m, 2 H), 0.78-0.72 (m, 6 H). ¹³C NMR (125 MHz, CDCl3): δ = 171.7, 169.2, 134.2, 131.6, 123.3, 79.2, 75.3, 61.8, 60.4, 52.5, 51.1, 29.2, 26.1, 25.5, 25.3, 22.9, 9.39, 9.37. Anal. Calcd for C22H32N2O6: C, 62.84, H, 7.67, N, 6.66. Found: C, 62.70, H, 7.85, N, 6.65.

17

Dialdehyde 9 was pure enough to be used for the next step. However, it was labile to purification on silica gel column chromatography for combustion analysis, affording a complex mixture involving cyclized products.

20

Compound 10: obtained as an off-white solid by washing with hot toluene; [α]D ²².5 -46.5 (c 1.10, CHCl3); mp 202.3-202.7 ˚C. ¹H NMR (500 MHz, CDCl3, data of a mixture of rotamers): δ = 9.55 (s, 0.13 H), 9.53 (s, 0.87 H), 7.86-7.72 (m, 4 H), 6.70 (s, 0.13 H), 6.67 (s, 0.87 H), 5.53 (d, J = 7.6 Hz, 0.87 H), 5.26 (d, J = 7.6 Hz, 0.13 H), 4.95-4.90 (m, 0.87 H), 4.75-4.71 (m, 0.87 H), 4.45-4.38 (m, 1.13 H), 4.20-4.18 (m, 0.13 H), 3.46-3.37 (m, 1 H), 3.05-2.98 (m, 1 H), 2.75-2.65 (m, 1 H), 2.05 (s, 0.4 H), 1.78 (s, 2.6 H), 1.60-1.50 (m, 4 H), 1.00-0.85 (m, 6 H). ¹³C NMR (125 Hz, CDCl3, data of a mixture of rotamers): δ = 192.3, 170.3, 168.1, 147.6, 138.8, 134.2, 131.6, 128.5, 123.5, 82.5, 74.6, 54.3, 47.8, 26.3, 25.7, 25.5, 23.3, 9.7, 9.4. Anal. Calcd for C22H26N2O5: C, 66.32; H, 6.58; N, 7.03. Found: C, 66.15; H, 6.72; N, 7.05. HRMS (FAB+): m/z calcd for C22H27N2O5 [MH+]: 399.1920; found: 399.1925.

22

Evaporation of the volatiles and addition of a large excess of H2O to the residue provided an off-white solid, which was collected by filtration and washed successively with H2O and MeOt-Bu.
Compound 11: obtained as a white solid (mp >280 ˚C) with poor solubility in organic solvents such as MeOH or CHCl3: [α]D ²5 -58.4 (c 0.54, DMSO). ¹H NMR (500 MHz, DMSO-d 6): δ = 12.6 (br s, 1 H), 7.92-7.80 (m, 4 H), 6.69 (s, 1 H), 4.38-4.20 (m, 3 H), 3.42-3.10 (m, 2 H), 2.63-2.50 (m, 1 H), 1.50-1.32 (m, 4 H), 0.86 (t, J = 7.3 Hz, 3 H), 0.75 (t, J = 7.3 Hz, 3 H). ¹³C NMR (125 Hz, DMSO-d 6): δ = 169.1, 167.6, 167.0, 137.5, 134.3, 129.0, 123.0, 81.0, 74.7, 51.5, 48.9, 26.6, 25.8, 25.1, 22.4, 9.5, 8.9. Anal. Calcd for C22H26N2O6: C, 63.76; H, 6.32; N, 6.76. Found: C, 63.76; H, 6.45; N, 6.71.

24

Crude 12a deposited efficiently on dilution of the reaction mixture with a large excess of diluted HCl. Filtration and washing with water provided pure 12a as a white solid: [α]D ²².8 -79.2 (c 1.07, CHCl3-MeOH = 4:1); mp 180.4-180.8 ˚C. ¹H NMR (500 MHz, CD3OD): δ = 7.43-7.23 (m, 4 H), 6.73 (br s, 1 H), 4.75-4.50 (m, 2 H), 4.25-3.80 (m, 3 H), 3.37-3.33 (m, 1 H), 2.73-2.65 (m, 1 H), 2.33-2.27 (m, 1 H), 1.50-1.35 (m, 4 H), 0.86-0.77 (m, 6 H). ¹³C NMR (125 Hz, CD3OD): δ = 173.9, 172.0, 169.4, 140.9, 139.1, 136.3, 131.7, 130.7, 129.8, 128.7, 128.6, 83.8, 77.3, 63.5, 55.9, 31.5, 27.3, 26.8, 23.0, 9.9, 9.6. Anal. Calcd for C22H30N2O6: C, 63.14; H, 7.23; N, 6.69. Found: C, 62.89; H, 7.37; N, 6.73.

25

Dilution of the reaction mixture with a large excess of water deposited a white solid, which was washed successively with H2O and MeOt-Bu to give unmingled 12b as a white solid: [α]D ²³.0 -48.0 (c 1.11, CHCl3); mp 209.3-210 ˚C. ¹H NMR (500 MHz, CDCl3): δ = 7.43-7.23 (m, 4 H), 6.73 (br s, 1 H), 4.75-4.50 (m, 2 H), 4.25-3.80 (m, 3 H), 3.37-3.33 (m, 1 H), 2.73-2.65 (m, 1 H), 2.33-2.27 (m, 1 H), 1.50-1.35 (m, 4 H), 0.86-0.77 (m, 6 H). ¹³C NMR (125 Hz, CDCl3): δ = 171.5, 169.9, 165.9, 139.8, 137.8, 135.1, 131.2, 130.7, 129.1, 128.1, 127.9, 82.2, 75.7, 64.4, 60.9, 54.3, 48.7, 30.5, 26.2, 25.6, 22.8, 14.1, 9.6, 9.2. Anal. Calcd for C24H34N2O6: C, 64.55; H, 7.67; N, 6.27. Found: C, 64.25; H, 8.03; N, 6.21.

26

Oseltamivir (1), obtained as a white semi-solid: [α]D ²5.0 -55.8 (c 2.05, CHCl3). ¹H NMR (500 MHz, CDCl3): δ = 6.79 (br s, 1 H), 5.48 (d, J = 7.6 Hz, 1 H), 4.25-4.18 (m, 3 H), 3.55-3.48 (m, 1 H), 3.38-3.32 (m, 1 H), 3.27-3.20 (m, 1 H), 2.75 (dd, J = 17.9, 5.2 Hz, 1 H), 2.19-2.11 (m, 1 H), 2.04 (s, 3 H), 1.60-1.47 (m, 6 H), 1.29 (t, J = 7.1 Hz, 3 H), 0.95-0.88 (m, 6 H). ¹³C NMR (125 Hz, CDCl3): δ = 170.9, 166.3, 137.5, 129.5, 81.6, 74.8, 60.8, 58.9, 49.2, 33.6, 26.2, 25.7, 23.6, 14.2, 9.5, 9.3. ¹H NMR and ¹³C NMR spectra and optical rotation value were in full accordance with those of the authentic sample obtained through a basic extraction (sat. aq NaHCO3-5% aq Na2CO3-CHCl3) from commercial Tamiflu: [α]D ²³.0 -56.1 (c 1.24, CHCl3). ¹H NMR (500 MHz, CDCl3): δ = 6.79 (br s, 1 H), 5.79 (d, J = 7.95 Hz, 1 H), 4.26-4.17 (m, 3 H), 3.57-3.49 (m, 1 H), 3.38-3.32 (m, 1 H), 3.26-3.18 (m, 1 H), 2.75 (dd, J = 17.9, 4.9 Hz, 1 H), 2.18-2.10 (m, 1 H), 2.04 (s, 3 H), 1.66-1.60 (m, 2 H), 1.56-1.47 (m, 4 H), 1.29 (t, J = 7.0 Hz, 3 H), 0.95-0.87 (m, 6 H). ¹³C NMR (125 Hz, CDCl3): δ = 170.9, 166.3, 137.5, 129.5, 81.6, 74.8, 60.8, 59.0, 49.2, 33.6, 26.2, 25.7, 23.6, 14.2, 9.5, 9.3.