Subscribe to RSS
DOI: 10.1055/s-0028-1087662
Regio- and Chemoselective One-Step 3-O-Alkylenation of Unprotected Ascorbic Acid Using ω-Iodoalkanols
Publication History
Publication Date:
15 January 2009 (online)
Abstract
A regio- and chemoselective alkylenation employing unprotected ascorbic acid and a series of unprotected iodoalkanols in the presence of sodium hydrogen carbonate in dimethyl sulfoxide is described. This atom economic high yielding procedure delivers the corresponding 3-O-alkylene ethers in a single step without prior protection. Specific 3-O-etherification was also observed with unprotected 16-iodohexadecanoic acid and with 2-(10-iododecyl)isoindole-1,3-dione. Furthermore, an 2-O-alkylene derivative was obtained when 3-O-benzyl ascorbic acid was reacted with unprotected 10-iododecanol under slightly modified conditions. Finally, the antioxidative activity of all compounds was determined and compared to vitamin C and E.
Key words
ascorbic acid - regioselective - chemoselective - 3-O-alkylenation - ω-iodoalkanols
- 1
Jover E.Gonzalez de Aguilar J.-L.Luu B.Lutz-Becher B. Eur. J. Pharmacol. 2005, 516: 197 - 2
Girlanda-Junges C.Keyling-Bilger F.Schmitt G.Luu B. Tetrahedron 1998, 54: 7735 -
3a
Muller T.Grandbarbe L.Morga E.Heuschling P.Bang L. Bioorg. Med. Chem. Lett. 2004, 14: 6023 -
3b
Muller T.Coowar D.Hanbali M.Heuscling P.Luu B. Tetrahedron 2006, 62: 12025 -
4a
Hanbali M.Vela-Ruiz M.Bagnard D.Luu B. Bioorg. Med. Chem. Lett. 2006, 16: 2637 -
4b
Hanbali M.Bagnard M.Luu B. Bioorg. Med. Chem. Lett. 2006, 16: 3917 - 5
Hauss F.Liu J.Michelucci A.Coowar D.Morga E.Heuschling P.Luu B. Bioorg. Med. Chem. Lett. 2007, 17: 4218 -
6a
Jacob RA.Sotoudeh G. Nutr. Clin. Care 2002, 5: 66 -
6b
Mayne ST. J. Nutr. 2003, 133: 933 - 7
Nihro Y.Miyataka H.Sudo T.Matsumoto H.Satoh T. J. Med. Chem. 1991, 34: 2152 - 8
Kukarni MG.Thopate SR. Tetrahedron 1996, 52: 1293 -
9a
Wimalasena K.Mahindaratne MPD. J. Org. Chem. 1994, 59: 3427 -
9b
Olabisi AO.Wimalasena K. J. Org. Chem. 2004, 69: 7026 -
9c
Kulkarni MG.Kate SD. Synth. Commun. 2004, 34: 2365 -
10a
Tahir H.Hindsgaul O. J. Org. Chem. 2000, 65: 911 -
10b
Vilaça G.Rubio C.Susperregui J.Latxague L.Déléris G. Tetrahedron 2002, 58: 9249 -
11a
Beifuss U.Kunz O.Aguado GP. Synlett 1999, 147 -
11b
Beifuss U.Kunz O.Voss G. Tetrahedron 2000, 56: 357 - 12
Kikugawa Y.Sakamoto T.Sato S.Asami K. Heterocycles 2005, 66: 579 - 13
Kato K.Terao S.Shimamoto N.Hirata M. J. Med. Chem. 1988, 31: 793 - 14
Mulzer J.Angermann A.Schubert B.Seilz A. J. Org. Chem. 1986, 51: 5294 - 15
Kruizinga WH.Kellogg RM. J. Am. Chem. Soc. 1981, 103: 5183
References and Notes
Typical Experimental Procedure; Preparation of ( R )-5-[( S )-1,2-Dihydroxyethyl)]-3-hydroxy-4-(10-hydroxy-decyloxy)furan-2 (5 H )-one (11b): Ascorbic acid (3.20 g, 18.20 mmol, 2.5 equiv) and NaHCO3 (1.83 g, 21.85 mmol, 3 equiv) were added to a solution of 10-iododecanol (2.07 g, 7.28 mmol, 1 equiv) in anhyd DMSO (18 mL) and the resulting mixture was heated at 60 ˚C. After 3 h, DMSO was evaporated under reduced pressure and the residue was suspended in ethanol (12 mL) and brine (12 mL). EtOAc (200 mL) was added to the suspension which was then dried over MgSO4, filtered and evaporated under reduced pressure. The crude was purified via silica gel column chromatography (CH2Cl2-MeOH, 9:1) and was recrystallized (EtOAc-hexane) to give a white solid (80%). R f = 0.30 (EtOAc); mp 71-73 ˚C. IR (CHCl3): 3396 (OH), 1748 (CyO), 1693 (CyO) cm-¹. ¹H NMR (300 MHz, CD3OD): δ = 1.31 (br s, 12 H, H-3′ to H-8′), 1.51 (m, 2 H, H-9′), 1.72 (m, 2 H, H-2′), 3.52 (t, J = 6.6 Hz, 2 H, H-10′), 3.64 (m, 2 H, CH2OH), 3.82 (m, 1 H, CHOH), 4.48 (m, 2 H, H-1′), 4.75 (d, J = 1.8 Hz, 1 H, CH). ¹³C NMR (75 MHz, CD3OD): δ = 25.2, 25.5 (C-2′, C-3′), 28.2-29.2 (C-4′ to C-8′), 32.2 (C-9′), 61.6 (CH2OH), 70.0 (CHOH), 70.5 (C-10′), 72.4 (C-1′), 75.2 (CH), 119.0 (=COH), 150.8 (=CO-alkyl), 171.8 (C=O).