Semin Respir Crit Care Med 2008; 29(5): 542-551
DOI: 10.1055/s-0028-1085705
© Thieme Medical Publishers

Using Animal Models to Develop New Treatments for Tuberculosis

Eric Nuermberger1 , 2
  • 1Department of Medicine, Johns Hopkins University, Baltimore, Maryland
  • 2Department of International Health, Johns Hopkins University, Baltimore, Maryland
Further Information

Publication History

Publication Date:
22 September 2008 (online)

ABSTRACT

Animal models have an important role in the preclinical evaluation of new antituberculosis drug candidates. Although it does not recapitulate the clinicopathological manifestations of tuberculosis in humans, the mouse remains the best characterized and most economical animal model for experimental chemotherapy. Provided care is taken to optimize the experimental conditions, the mouse has produced reliable data on the bactericidal and sterilizing activity of existing antituberculosis drugs and informed numerous clinical trials. Still, other animal models, especially the guinea pig, may have utility as confirmatory, or even alternative, models under certain circumstances. This chapter reviews some of the important considerations when selecting an animal model and presents a model for the sequential evaluation of a new compound with promising antituberculosis activity.

REFERENCES

  • 1 Grosset J, Ji B. Experimental chemotherapy of mycobacterial diseases. In: Gangadharam PRJ, Jenkins PA Mycobacteria, vol 2: Chemotherapy. New York; Chapman & Hall 1998: 51-97
  • 2 Grosset J. The sterilizing value of rifampicin and pyrazinamide in experimental short-course chemotherapy.  Bull Int Union Tuberc. 1978;  53 5-12
  • 3 Grosset J, Grumbach F, Rist N. Le role de la rifampicine dans la phase ultime du traitement de la tuberculose murine experimentale.  Rev Fr Mal Respir. 1978;  6 515-520
  • 4 Grumbach F. La duree optimale de l'antibiotherapie par l'association isoniazide + rifampicine dans la tuberculose experimentale de la souris. Etude de la phase post-therapeutique. Epreuve de la cortisone.  Rev Fr Mal Respir. 1967;  3 625-634
  • 5 Mitchison D A. Basic concepts in the chemotherapy of tuberculosis. In: Gangadharam PRJ, Jenkins PA Mycobacteria, vol 2: Chemotherapy. New York; Chapman & Hall 1998: 15-50
  • 6 Warner D F, Mizrahi V. Tuberculosis chemotherapy: the influence of bacillary stress and damage response pathways on drug efficacy.  Clin Microbiol Rev. 2006;  19 558-570
  • 7 Balaban N Q, Merrin J, Chait R, Kowalik L, Leibler S. Bacterial persistence as a phenotypic switch.  Science. 2004;  305 1622-1625
  • 8 Medina E, North R J. Resistance ranking of some common inbred mouse strains to Mycobacterium tuberculosis and relationship to major histocompatibility complex haplotype and Nramp1 genotype.  Immunology. 1998;  93 270-274
  • 9 Chapuis L, Ji B, Truffot-Pernot C, O'Brien R J, Raviglione M C, Grosset J H. Preventive therapy of tuberculosis with rifapentine in immunocompetent and nude mice.  Am J Respir Crit Care Med. 1994;  150 1355-1362
  • 10 Lenaerts A J, Gruppo V, Brooks J V, Orme I M. Rapid in vivo screening of experimental drugs for tuberculosis using gamma interferon gene-disrupted mice.  Antimicrob Agents Chemother. 2003;  47 783-785
  • 11 Nuermberger E L, Yoshimatsu T, Tyagi S et al.. Moxifloxacin-containing regimens of reduced duration produce a stable cure in murine tuberculosis.  Am J Respir Crit Care Med. 2004;  170 1131-1134
  • 12 Veziris N, Truffot-Pernot C, Aubry A, Jarlier V, Lounis N. Fluoroquinolone-containing third-line regimen against Mycobacterium tuberculosis in vivo.  Antimicrob Agents Chemother. 2003;  47 3117-3122
  • 13 Nuermberger E, Grosset J. Pharmacokinetic and pharmacodynamic issues in the treatment of mycobacterial infections.  Eur J Clin Microbiol Infect Dis. 2004;  23 243-255
  • 14 Dickinson J, Guy A, Mitchison D A. Bioavailability of rifampin in experimental murine tuberculosis.  Antimicrob Agents Chemother. 1992;  36 2066-2067
  • 15 Grosset J, Truffot-Pernot C, Lacroix C, Ji B. Antagonism between isoniazid and the combination pyrazinamide-rifampin against tuberculosis infection in mice.  Antimicrob Agents Chemother. 1992;  36 548-551
  • 16 Orme I. Search for new drugs for treatment of tuberculosis.  Antimicrob Agents Chemother. 2001;  45 1943-1946
  • 17 Byrne S T, Denkin S M, Gu P, Nuermberger E, Zhang Y. Activity of ketoconazole against Mycobacterium tuberculosis in vitro and in the mouse model.  J Med Microbiol. 2007;  56 1047-1051
  • 18 Tyagi S, Nuermberger E, Yoshimatsu T et al.. Bactericidal activity of the nitroimidazopyran PA-824 in a murine model of tuberculosis.  Antimicrob Agents Chemother. 2005;  49 2289-2293
  • 19 Jayaram R, Gaonkar S, Kaur P et al.. Pharmacokinetics-pharmacodynamics of rifampin in an aerosol infection model of tuberculosis.  Antimicrob Agents Chemother. 2003;  47 2118-2124
  • 20 Jayaram R, Shandil R K, Gaonkar S et al.. Isoniazid pharmacokinetics-pharmacodynamics in an aerosol infection model of tuberculosis.  Antimicrob Agents Chemother. 2004;  48 2951-2957
  • 21 Benator D, Bhattacharya M, Bozeman L et al.. Rifapentine and isoniazid once a week versus rifampicin and isoniazid twice a week for treatment of drug-susceptible pulmonary tuberculosis in HIV-negative patients: a randomised clinical trial.  Lancet. 2002;  360 528-534
  • 22 Tam C M, Chan S L, Kam K M, Goodall R L, Mitchison D A. Rifapentine and isoniazid in the continuation phase of a 6-month regimen: final report at 5 years: prognostic value of various measures.  Int J Tuberc Lung Dis. 2002;  6 3-10
  • 23 Vernon A, Burman W, Benator D, Khan A, Bozeman L. Acquired rifamycin monoresistance in patients with HIV-related tuberculosis treated with once-weekly rifapentine and isoniazid. Tuberculosis Trials Consortium.  Lancet. 1999;  353 1843-1847
  • 24 Rosenthal I M, Williams K, Tyagi S et al.. Potent twice-weekly rifapentine-containing regimens in murine tuberculosis.  Am J Respir Crit Care Med. 2006;  174 94-101
  • 25 Rosenthal I M, Zhang M, Williams K N et al.. Daily dosing of rifapentine cures tuberculosis in three months or less in the murine model.  PLoS Med. 2007;  4 e344
  • 26 Grosset J. Bacteriologic basis of short-course chemotherapy for tuberculosis.  Clin Chest Med. 1980;  1 231-241
  • 27 Mitchison D A. Role of individual drugs in the chemotherapy of tuberculosis.  Int J Tuberc Lung Dis. 2000;  4 796-806
  • 28 Burman W J. The value of in vitro drug activity and pharmacokinetics in predicting the effectiveness of antimycobacterial therapy: a critical review.  Am J Med Sci. 1997;  313 355-363
  • 29 Andries K, Verhasselt P, Guillemont J et al.. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis .  Science. 2005;  307 223-227
  • 30 Matsumoto M, Hashizume H, Tomishige T et al.. OPC-67683, a nitro-dihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice.  PLoS Med. 2006;  3 e466
  • 31 Nuermberger E, Rosenthal I, Tyagi S et al.. Combination chemotherapy with the nitroimidazopyran PA-824 and first-line drugs in a murine model of tuberculosis.  Antimicrob Agents Chemother. 2006;  50 2621-2625
  • 32 Nuermberger E L, Yoshimatsu T, Tyagi S et al.. Moxifloxacin-containing regimen greatly reduces time to culture conversion in murine tuberculosis.  Am J Respir Crit Care Med. 2004;  169 421-426
  • 33 Kelly B P, Furney S K, Jessen M T, Orme I M. Low-dose aerosol infection model for testing drugs for efficacy against Mycobacterium tuberculosis .  Antimicrob Agents Chemother. 1996;  40 2809-2812
  • 34 Canetti G. The Tubercle Bacillus in the Pulmonary Lesions of Man. New York; Springer 1955
  • 35 Opie E J, Aronson J D. Tubercle bacilli in latent tuberculous lesions and in lung tissue without tuberculous lesions.  Arch Pathol Lab Med. 1927;  4 1-21
  • 36 McCune R M, Tompsett R. Fate of Mycobacterium tuberculosis in mouse tissues as determined by the microbial enumeration technique.  J Exp Med. 1956;  104 737-802
  • 37 Lecoeur H F, Truffot-Pernot C, Grosset J H. Experimental short-course preventive therapy of tuberculosis with rifampin and pyrazinamide.  Am Rev Respir Dis. 1989;  140 1189-1193
  • 38 Nuermberger E L, Yoshimatsu T, Tyagi S, Bishai W R, Grosset J H. Paucibacillary tuberculosis in mice after prior aerosol immunization with Mycobacterium bovis BCG.  Infect Immun. 2004;  72 1065-1071
  • 39 Quigley M A, Mwinga A, Hosp M et al.. Long-term effect of preventive therapy for tuberculosis in a cohort of HIV-infected Zambian adults.  AIDS. 2001;  15 215-222
  • 40 Mwinga A, Hosp M, Godfrey-Faussett P et al.. Twice weekly tuberculosis preventive therapy in HIV infection in Zambia.  AIDS. 1998;  12 2447-2457
  • 41 Halsey N A, Coberly J S, Desormeaux J et al.. Randomised trial of isoniazid versus rifampicin and pyrazinamide for prevention of tuberculosis in HIV-1 infection.  Lancet. 1998;  351 786-792
  • 42 Gordin F, Chaisson R E, Matts J P et al.. Rifampin and pyrazinamide vs isoniazid for prevention of tuberculosis in HIV-infected persons: an international randomized trial. Terry Beirn Community Programs for Clinical Research on AIDS, the Adult AIDS Clinical Trials Group, the Pan American Health Organization, and the Centers for Disease Control and Prevention Study Group.  JAMA. 2000;  283 1445-1450
  • 43 Ji B, Truffot-Pernot C, Lacroix C et al.. Effectiveness of rifampin, rifabutin, and rifapentine for preventive therapy of tuberculosis in mice.  Am Rev Respir Dis. 1993;  148 1541-1546
  • 44 Nuermberger E, Tyagi S, Williams K N, Rosenthal I, Bishai W R, Grosset J H. Rifapentine, moxifloxacin, or DNA vaccine improves treatment of latent tuberculosis in a mouse model.  Am J Respir Crit Care Med. 2005;  172 1452-1456
  • 45 Schechter M, Zajdenverg R, Falco G et al.. Weekly rifapentine/isoniazid or daily rifampin/pyrazinamide for latent tuberculosis in household contacts.  Am J Respir Crit Care Med. 2006;  173 922-926
  • 46 Dhillon J, Dickinson J M, Sole K, Mitchison D A. Preventive chemotherapy of tuberculosis in Cornell model mice with combinations of rifampin, isoniazid, and pyrazinamide.  Antimicrob Agents Chemother. 1996;  40 552-555
  • 47 Lalande V, Truffot-Pernot C, Paccaly-Moulin A, Grosset J, Ji B. Powerful bactericidal activity of sparfloxacin (AT-4140) against Mycobacterium tuberculosis in mice.  Antimicrob Agents Chemother. 1993;  37 407-413
  • 48 Karlson A G. Therapeutic effect of ethambutol on experimental tuberculosis of guinea pigs.  Am Rev Respir Dis. 1961;  84 902-904
  • 49 Karlson A G, Feldman W H. Isoniazid in experimental tuberculosis of guinea pigs infected with tubercle bacilli resistant to streptomycin and to para-aminosalicylic acid.  Am Rev Tuberc. 1952;  66 477-485
  • 50 Bjerkedal T, Palmer C E. Effect of isoniazid prophylaxis in experimental tuberculosis in guinea pigs: action of isoniazid in vivo.  Am J Hyg. 1962;  76 89-123
  • 51 Dickinson J M, Mitchison D A. Bactericidal activity in vitro and in the guinea-pig of isoniazid, rifampicin and ethambutol.  Tubercle. 1976;  57 251-258
  • 52 Helke K L, Mankowski J L, Manabe Y C. Animal models of cavitation in pulmonary tuberculosis.  Tuberculosis (Edinb). 2006;  86 337-348
  • 53 Elwood R L, Wilson S, Blanco J C et al.. The American cotton rat: a novel model for pulmonary tuberculosis.  Tuberculosis (Edinb). 2007;  87 145-154
  • 54 Karakousis P C, Yoshimatsu T, Lamichhane G et al.. Dormancy phenotype displayed by extracellular Mycobacterium tuberculosis within artificial granulomas in mice.  J Exp Med. 2004;  200 647-657

Eric NuermbergerM.D. 

1550 Orleans St., Baltimore

MD 21231

Email: enuermb@jhmi.edu