Subscribe to RSS
DOI: 10.1055/s-0028-1083569
Synthesis of a Trihydroxylated Aminoazepane from d-Glucitol by an Intramolecular Aziridine Ring Opening
Publication History
Publication Date:
16 October 2008 (online)
Abstract
Transformation of d-glucitol into its 1,6-diazido derivative allowed its conversion into the polyhydroxylated aminoazepane ring in a one-pot reaction using Ph3P and H2O.
Key words
azepanes - 1-deoxynojirimycin - iminosugars - aziridine
-
1a
Heightman TD.Vasella AT. Angew. Chem. Int. Ed. 1999, 38: 750 -
1b
Sears P.Wong C.-H. Angew. Chem. Int. Ed. 1999, 38: 2301 -
1c
Davies JA.Fisher CE.Barnett MW. Biochem. Soc. Trans. 2001, 29: 166 -
2a
Simmott ML. Chem. Rev. 1990, 90: 1171 -
2b
Barbier P.Stadlwieser J.Taylor S. Science 1998, 280: 1369 - 3
Ishida N.Kumagai K.Niida T. J. Antibiot. [A] 1967, 20: 66 - 4
Papandreou M.-J.Barbouche R.Guieu R.Kieny MP.Fenouillet E. Molec. Pharmacol. 2002, 61: 186 -
5a
Martin OR. In Carbohydrate Mimics: Concepts and MethodsChapleur Y. VCH; Weinheim: 1998. p.259 -
5b
Li H.Blériot Y.Chantereau C.Mallet J.-M.Sollogoub M.Zhang Y.Rodriguez-Garcia E.Vogel P.Jimenez-Barbero J.Sinay P. Org. Biomol. Chem. 2004, 2: 1492 -
5c
Dhavale DD.Markad SD.Karanjule NS.PrakashaReddy J. J. Org. Chem. 2004, 69: 4760 -
6a
Andreana PR.Sanders T.Janczuk A.Warrick JI.Wang PG. Tetrahedron Lett. 2002, 43: 6525 -
6b
Moutel S.Shipman M.Martin OR.Ikeda K.Asano N. Tetrahedron: Asymmetry 2005, 16: 487 -
6c
Li H.-Q.Liu T.Zhang YM.Favre S.Bello C.Vogel P.Butters TD.Oikonomakos NG.Marrot J.Bleriot Y. ChemBioChem. 2008, 9: 253 - 7
Kuszmann J.Sohár P. Carbohydr. Res. 1979, 74: 187 -
8a
Kato L. Dissertação de Mestrado Universidade de Campinas; Brazil: 1996. -
8b
Kato L.Braga RM. Magn. Reson. Chem. 1999, 37: 447 -
8c
Braga RM.Kato L. J. Braz. Chem. Soc. 2003, 14: 822
References and Notes
Spectroscopic Data
for (5
S
)-Amino-(4
R
)-
O
-benzyl-1,5,6-trideoxy-(2
S
,3
R
)-
O
-isopropylidene-1,6-imino-
d
-glucitol (16,
Figure 2)
R
f
= 0.2 (CHCl3-MeOH,
9:1; 2×). IR (KBr): 3360, 3291 (NH), 2851 (CH), 1070 (CN)
cm-¹. MS: m/z (%) = 57 (16), 71
(21), 84 (26), 91 (100), 98 (49), 110 (8), 126 (34), 141 (7), 149
(10), 167 (14), 184 (27), 201 (23), 227 (3), 277 (10), 292 (2). ¹H
NMR (500 MHz, CDCl3): δ = 1.43, 1.44 [6
H, 2 s, C(CH3)2], 2.13-2.18
(3 H, br s, NH aliphatic and cyclic), 2.71 (1 H, dd, ²
J = 11.7 Hz, ³
J = 9.0 Hz,
H1-α), 2.81 (1 H, dd, ²
J = 14.4 Hz, ³
J = 6.8 Hz,
H6-α), 2.89 (1 H, dd, ²
J = 14.4 Hz, ³
J = 2.2 Hz,
H6-β), 3.00 (1 H, ddd, ³
J = 6.8 Hz, ³
J = 4.6 Hz, ³
J = 2.2 Hz,
H5), 3.37 (1 H, dd, ³
J = 9.0
Hz, ³
J = 4.6
Hz, H4), 3.40 (1 H, dd, ²
J = 11.7 Hz, ³
J = 4.8 Hz,
H1-β), 3.89 (1 H, td, ³
J = 9.0 Hz, ³
J = 4.8 Hz,
H2), 4.01 (1 H, t, ³
J = 9.0 Hz,
H3), 4.68 (1 H, d, ²
J = 11.7
Hz, OCHH′C6H5), 4.93 (1 H, d, ²
J = 11.7 Hz,
OCHH′C6H5), 7.29 (1 H, t, ³
J = 7.4 Hz,
H4′), 7.35 (2 H, t, ³
J = 7.4
Hz, H3′, H5′), 7.39 (2 H, d, ³
J = 7.4 Hz, H2′,
H6′). ¹³C NMR (125 MHz, CDCl3): δ = 27.0,
27.2 [C(CH3)2], 49.2 (C6),
49.8 (C1), 55.9 (C5), 72.9 (OCH2C6H5),
75.9 (C2), 83.4 (C3), 85.8 (C4), 109.2 [C(CH3)2],
127.6 (C4′), 128.0 (C2′, C6′), 128.3
(C3′, C5′), 138.6 (C1′).